55,443 research outputs found
Differential Amplify-and-Forward Relaying in Time-Varying Rayleigh Fading Channels
This paper considers the performance of differential amplify-and-forward
(D-AF) relaying over time-varying Rayleigh fading channels. Using the
auto-regressive time-series model to characterize the time-varying nature of
the wireless channels, new weights for the maximum ratio combining (MRC) of the
received signals at the destination are proposed. Expression for the pair-wise
error probability (PEP) is provided and used to obtain an approximation of the
total average bit error probability (BEP). The obtained BEP approximation
clearly shows how the system performance depends on the auto-correlation of the
direct and the cascaded channels and an irreducible error floor exists at high
signal-to-noise ratio (SNR). Simulation results also demonstrate that, for
fast-fading channels, the new MRC weights lead to a better performance when
compared to the classical combining scheme. Our analysis is verified with
simulation results in different fading scenarios
Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory
In this paper, we present an effectively numerical approach based on
isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT)
for geometrically nonlinear analysis of laminated composite plates. The HSDT
allows us to approximate displacement field that ensures by itself the
realistic shear strain energy part without shear correction factors. IGA
utilizing basis functions namely B-splines or non-uniform rational B-splines
(NURBS) enables to satisfy easily the stringent continuity requirement of the
HSDT model without any additional variables. The nonlinearity of the plates is
formed in the total Lagrange approach based on the von-Karman strain
assumptions. Numerous numerical validations for the isotropic, orthotropic,
cross-ply and angle-ply laminated plates are provided to demonstrate the
effectiveness of the proposed method
- …