130 research outputs found

    Entropy Crisis, Ideal Glass Transition and Polymer Melting: Exact Solution on a Husimi Cactus

    Full text link
    We introduce an extension of the lattice model of melting of semiflexible polymers originally proposed by Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we introduce an interaction energy that corresponds to the presence of a pair of parallel bonds and a second interaction energy associated with the presence of a hairpin turn. Both these new terms represent four-site interactions. The model is solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a first-order melting transition between a liquid and a crystalline phase. The continuation of the liquid phase below this temperature gives rise to a supercooled liquid, which turns continuously into a new low-temperature phase, called metastable liquid. This liquid-liquid transition seems to have some features that are characteristic of the critical transition predicted by the mode-coupling theory.Comment: To be published in Physical Review E, 68 (2) (2003

    Configurational Entropy and its Crisis in Metastable States: Ideal Glass Transition in a Dimer Model as a Paragidm of a Molecular Glass

    Full text link
    We discuss the need for discretization to evaluate the configurational entropy in a general model. We also discuss the prescription using restricted partition function formalism to study the stationary limit of metastable states. We introduce a lattice model of dimers as a paradigm of molecular fluid and study metastability in it to investigate the root cause of glassy behavior. We demonstrate the existence of the entropy crisis in metastable states, from which it follows that the entropy crisis is the root cause underlying the ideal glass transition in systems with particles of all sizes. The orientational interactions in the model control the nature of the liquid-liquid transition observed in recent years in molecular glasses.Comment: 36 pages, 9 figure

    Thermodynamic Comparison and the Ideal Glass Transition of A Monatomic Systems Modeled as an Antiferromagnetic Ising Model on Husimi and Cubic Recursive Lattices of the Same Coordination Number

    Full text link
    Two kinds of recursive lattices with the same coordination number but different unit cells (2-D square and 3-D cube) are constructed and the antiferromagnetic Ising model is solved exactly on them to study the stable and metastable states. The Ising model with multi-particle interactions is designed to represent a monatomic system or an alloy. Two solutions of the model exhibit the crystallization of liquid, and the ideal glass transition of supercooled liquid respectively. Based on the solutions, the thermodynamics on both lattices was examined. In particular, the free energy, energy, and entropy of the ideal glass, supercooled liquid, crystal, and liquid state of the model on each lattice were calculated and compared with each other. Interactions between particles farther away than the nearest neighbor distance are taken into consideration. The two lattices show comparable properties on the transition temperatures and the thermodynamic behaviors, which proves that both of them are practical to describe the regular 3-D case, while the different effects of the unit types are still obvious.Comment: 27 pages, 13 figure

    Non-equilibrium Thermodynamics: Structural Relaxation, Fictive temperature and Tool-Narayanaswamy phenomenology in Glasses

    Full text link
    Starting from the second law of thermodynamics applied to an isolated system consisting of the system surrounded by an extremely large medium, we formulate a general non-equilibrium thermodynamic description of the system when it is out of equilibrium. We then apply it to study the structural relaxation in glasses and establish the phenomenology behind the concept of the fictive temperature and of the empirical Tool-Narayanaswamy equation on firmer theoretical foundation.Comment: 20 pages, 1 figur

    contact.engineering -- Create, analyze and publish digital surface twins from topography measurements across many scales

    Full text link
    The optimization of surface finish to improve performance occurs largely through trial and error, despite significant advancements in the relevant science. There are three central challenges that account for this disconnect: (1) the challenge of integration of many different types of measurement for the same surface to capture the multi-scale nature of roughness; (2) the technical complexity of implementing spectral analysis methods, and of applying mechanical or numerical models to describe surface performance; (3) a lack of consistency between researchers and industries in how surfaces are measured, quantified, and communicated. Here we present a freely-available internet-based application which attempts to overcome all three challenges. First, the application enables the user to upload many different topography measurements taken from a single surface, including using different techniques, and then integrates all of them together to create a digital surface twin. Second, the application calculates many of the commonly used topography metrics, such as root-mean-square parameters, power spectral density (PSD), and autocorrelation function (ACF), as well as implementing analytical and numerical calculations, such as boundary element modeling (BEM) for elastic and plastic deformation. Third, the application serves as a repository for users to securely store surfaces, and if they choose, to share these with collaborators or even publish them (with a digital object identifier) for all to access. The primary goal of this application is to enable researchers and manufacturers to quickly and easily apply cutting-edge tools for the characterization and properties-modeling of real-world surfaces. An additional goal is to advance the use of open-science principles in surface engineering by providing a FAIR database where researchers can choose to publish surface measurements for all to use.Comment: 19 pages, 6 figure

    Exact correlation functions of Bethe lattice spin models in external fields

    Full text link
    We develop a transfer matrix method to compute exactly the spin-spin correlation functions of Bethe lattice spin models in the external magnetic field h and for any temperature T. We first compute the correlation function for the most general spin - S Ising model, which contains all possible single-ion and nearest-neighbor pair interactions. This general spin - S Ising model includes the spin-1/2 simple Ising model and the Blume-Emery-Griffiths (BEG) model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as T approaches the critical temperature. Our method to compute exact spin-spin correlation functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.Comment: 19 page

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    Transient Vestibulopathy in Wallenberg's Syndrome: Pathologic Analysis

    Get PDF
    Objective: To report an unusual lateral medullary stroke (LMS) associated with transient unidirectional horizontal, nystagmus, and decreased horizontal vestibulo-ocular reflex (h-VOR) gain that mimicked a peripheral vestibulopathy. MRI suggested involvement of caudal medial vestibular nucleus (MVN);however, the rapid resolution of the nystagmus and improved h-VOR gain favored transient ischemia without infarction. Decreased h-VOR gain is expected with peripheral vestibular lesions within the labyrinth or superior vestibular nerve;less frequently lateral pontine strokes involving the vestibular root entry, the vestibular fascicle, or neurons within the MVN may be responsible. The h-VOR is typically normal in LMS. Methods: Clinicopathologic examination of a 61-year-old man with an acute vestibular syndrome (AVS) and left LMS who died 3 weeks after the stroke. Postmortem brainstem analysis was performed. Results: The stroke involved the lateral medulla and pontomedullary junction, near the MVN, sparing the cerebellum and pons. To explain transient vestibular findings there are two possible hypotheses;the first would be that the MVN survived the ischemic process and would be histologically intact, and the second that vestibular afferents in the horizontal semicircular canal were ischemic and recovered after the ischemic process. Neuropathological examination showed a left LMS whose extent matched that seen by imaging. Non-ocular motor signs correlated well with structures affected by the infarction. Neurons and glia within nearby MVN were spared, as predicted by the rapid normalization of the ocular motor signs. Although unlikely, the possibility of transient intralabyrinthine arteriolar ischemia cannot be excluded. Additionally, truncal lateropulsion was due to combined lateral vestibulospinal tract and lateral reticular nucleus infarction. Conclusion: LMS may rarely be associated with an AVS that either represents or mimics a peripheral vestibulopathy. To our knowledge, this is the first neuropathologic examination of the brainstem of an LMS associated with transient vestibular findings occurring in the context of an anterior/posterior (AICA/PICA) cerebellar arterial variant stroke
    • …
    corecore