207 research outputs found
Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline
The angular distribution of the intensity in photoemission experiments is
affected by electron diffraction patterns and by a smoothly varying ISO
contribution originated by both intrumental details and physical properties of
the samples. The origin of the various contributions to the ISO component has
been identified since many years. Nonetheless in this work we present original
developement of the ED analysis, which arises from the evolution of
instrumental performance, in terms of analyzers positioning and angular
resolution, as well as collimation and size of X-ray beams in third generation
synchrotron sources. The analytical treatement of the instrumental factors is
presented in detail for the end station of the ALOISA beamline (Trieste
Synchrotron), where a wide variety of scattering geometries is available for ED
experiments. We present here the basic formulae and their application to
experimental data taken on the Fe/Cu3Au(001) system in order to highlight the
role of the various parameters included in the distribution function. A
specific model for the surface illumination has been developed as well as the
overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J.
Electron Spectrosc. Relat. Pheno
Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)
The phase immiscibility and the excellent matching between Ag(001) and
Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field
of low dimensionality magnetic systems. Intermixing could be drastically
limited at deposition temperatures as low as 140-150 K. The film structural
evolution induced by post-growth annealing presents many interesting aspects
involving activated atomic exchange processes and affecting magnetic
properties. Previous experiments, of He and low energy ion scattering on films
deposited at 150 K, indicated the formation of a segregated Ag layer upon
annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag
matrix. In those experiments, information on sub-surface layers was attained by
techniques mainly sensitive to the topmost layer. Here, systematic PED
measurements, providing chemical selectivity and structural information for a
depth of several layers, have been accompanied with a few XRD rod scans,
yielding a better sensitivity to the buried interface and to the film long
range order. The results of this paper allow a comparison with recent models
enlightening the dissolution paths of an ultra thin metal film into a different
metal, when both subsurface migration of the deposit and phase separation
between substrate and deposit are favoured. The occurrence of a surfactant-like
stage, in which a single layer of Ag covers the Fe film is demonstrated for
films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the
formation of two Ag capping layers is also reported. As the annealing
temperature was increased beyond 700 K, the surface layers closely resembled
the structure of bare Ag(001) with the residual presence of subsurface Fe
aggregates.Comment: 4 pages, 3 figure
Unexpectedly large electron correlation measured in Auger spectra of ferromagnetic iron thin films: orbital-selected Coulomb and exchange contributions
A set of electron-correlation energies as large as 10 eV have been measured
for a magnetic 2ML Fefilm deposited on Ag(001). By exploiting the spin
selectivity in angle-resolved Auger-photoelectroncoincidence spectroscopy and
the Cini-Sawatzky theory, the core-valence-valence Auger spectrumof a
spin-polarized system have been resolved: correlation energies have been
determined for eachindividual combination of the two holes created in the four
sub-bands involved in the decay: majorityand minority spin, as well asegandt2g.
The energy difference between final states with paralleland antiparallel spin
of the two emitted electrons is ascribed to the spin-flip energy for the final
ionstate, thus disentangling the contributions of Coulomb and exchange
interactions.Comment: 5 pages, 2 figures, 1 tabl
Unusual disordering processes of oxygen overlayers on Rh(111): A combined diffraction study using thermal He atoms and low-energy electrons
The temperature-dependent behavior of the Rh(111)-(2X2)-1O phase was investigated by He-atom scattering (HAS) and low-energy electron diffraction. The adsorption system undergoes an order-disorder phase transition at Tc=280±5 K, with critical exponents found to be consistent with the four-state Potts model. Beyond the phase transition the HAS specular peak intensity exhibits a strong and reversible increase. This finding points toward a reduction of the surface charge-density corrugation induced by the phase transition itself. Around 160 K, hydrogen adsorbed on the Rh(111)-(2X2)-1O surface reacts with oxygen to form water, and drives the overlayer in an out-of-equilibrium condition which is characterized by a dramatic domain-wall proliferation
From bi-layer to tri-layer Fe nanoislands on Cu3Au(001)
Self assembly on suitably chosen substrates is a well exploited root to
control the structure and morphology, hence magnetization, of metal films. In
particular, the Cu3Au(001) surface has been recently singled out as a good
template to grow high spin Fe phases, due to the close matching between the
Cu3Au lattice constant (3.75 Angstrom) and the equilibrium lattice constant for
fcc ferromagnetic Fe (3.65 Angstrom). Growth proceeds almost layer by layer at
room temperature, with a small amount of Au segregation in the early stage of
deposition. Islands of 1-2 nm lateral size and double layer height are formed
when 1 monolayer of Fe is deposited on Cu3Au(001) at low temperature. We used
the PhotoElectron Diffraction technique to investigate the atomic structure and
chemical composition of these nanoislands just after the deposition at 140 K
and after annealing at 400 K. We show that only bi-layer islands are formed at
low temperature, without any surface segregation. After annealing, the Fe atoms
are re-aggregated to form mainly tri-layer islands. Surface segregation is
shown to be inhibited also after the annealing process. The implications for
the film magnetic properties and the growth model are discussed.Comment: Revtex, 5 pages with 4 eps figure
Orexin receptors in GtoPdb v.2021.3
Orexin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Orexin receptors [42]) are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [109]. Currently the only orexin receptor ligands in clinical use are suvorexant and lemborexant, which are used as hypnotics. Orexin receptor crystal structures have been solved [134, 133, 54, 117, 46]
Orexin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
Orexin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Orexin receptors [39]) are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [102]. Currently the only orexin receptor ligand in clinical use is suvorexant, which is used as a hypnotic. Orexin receptor crystal structures have been solved [124, 123]
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, AndrĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂmicas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂmicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; ArgentinaFil: Garavaglia, MatĂas Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de Ing.genĂ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Goya, MarĂa Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de Ing.genĂ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis
Background: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings: To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance: Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked. © 2011 O'Reilly et al
- …