20 research outputs found

    PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    Get PDF
    Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts.Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts

    PETROGRAPHY AND MINERALOGY OF RETROGRADE METAPERIDOTITES FROM ALAG KHADNY ACCRETIONARY WEDGE (SW MONGOLIA): FLUID MODIFICATION IN SUPRASUBDUCTION ZONE

    Get PDF
    The Main Mongolian Lineament (MML) separates northern “Caledonian” tectonic province from southern “Hercynian” in SW part of Mongolia of the Central Asian Orogenic Belt (CAOB). The position of Eastern part of MML is widely discussed at recent time, since, this is an important for reconstruction of geodynamic evolution of this region. Some researchers suggest that ophiolite from the Erdene Uul and Maykhan Tsakhir Uul mountain ranges are Eastern part of an ophiolitic nappe system thrust northwards over the Dzabkhan-Baydrag continent, namely the Khantaishir and the Dariv ophiolites [Štípská et al., 2010; Buriánek et al., 2017]. Others have a different view, they suggest that investigated ophiolites refers to Gobi-Altai ophiolite system (523±5 – 518±6 Ma), which likely formed in front of the Gobi Altai microcontinent by initiation of a new southdipping subduction zone following arc–microcontinent collision in Northwest Mongolia [Jian et al., 2014]. However, ophiolites of this critical region of Mongolian the CAOB have not been investigated in detail.The Main Mongolian Lineament (MML) separates northern “Caledonian” tectonic province from southern “Hercynian” in SW part of Mongolia of the Central Asian Orogenic Belt (CAOB). The position of Eastern part of MML is widely discussed at recent time, since, this is an important for reconstruction of geodynamic evolution of this region. Some researchers suggest that ophiolite from the Erdene Uul and Maykhan Tsakhir Uul mountain ranges are Eastern part of an ophiolitic nappe system thrust northwards over the Dzabkhan-Baydrag continent, namely the Khantaishir and the Dariv ophiolites [Štípská et al., 2010; Buriánek et al., 2017]. Others have a different view, they suggest that investigated ophiolites refers to Gobi-Altai ophiolite system (523±5 – 518±6 Ma), which likely formed in front of the Gobi Altai microcontinent by initiation of a new southdipping subduction zone following arc–microcontinent collision in Northwest Mongolia [Jian et al., 2014]. However, ophiolites of this critical region of Mongolian the CAOB have not been investigated in detail

    Еко-дизайн. Поєднання нових технологій та нетрадиційних художніх рішень

    Get PDF
    The article is devoted to synthesis of design and alternative power. The basic ways which allows giving decorative functions to devices of energy transformation by making their part of the art decision of interiors, exteriors and a landscape are described. In other way, involving alternative power in design area. Traditional and modern methods of alternative energy sources use are considered. The project of an unusual colour decision in water design which uses features of the physical phenomena of some chemical substances is presented, so the projects of the author developed with application of eko-technologies are shown.Данная статья посвящена синтезу дизайна и альтернативной энергетики. Описаны основные способы, позволяющие придавать декоративные характеристики устройствам преобразования энергии, делая их частью художественного решения интерьеров, экстерьеров и ландшафта. И наоборот, привлечение альтернативной энергетики в область дизайна. Рассмотрены традиционные методы использования возобновляемых источников, и их более современные модификации. Представлен проект необычного цветового решения в аквадизайне, который использует особенности физических явлений некоторых химических веществ, а также показаны проекты автора, разработанные с применением эко-технологий.Дана стаття присвячена синтезу дизайну та альтернативної енергетики. Описано основні способи, що дозволяють надавати декоративні функції пристроїв перетворення енергії , роблячи їх частиною художнього рішення інтер'єрів, екстер'єру і ландшафту. І навпаки, залучення альтернативної енергетики в область дизайну. Розглянуто традиційні методи використання поновлюваних джерел, і їх більш сучасні модифікації. Представлений проект незвичайного колірного рішення в аквадизайну , який використовує особливості фізичних явищ деяких хімічних речовин, а також показані проекти автора, розроблені із застосуванням еко - технологій

    GEOCHEMISTRY AND ORIGIN OF THE EASTERN SAYAN OPHIOLITES, TUVA-MONGOLIAN MICROCONTINENT (SOUTHERN SIBERIA)

    Get PDF
    The Eastern Sayan ophiolites (1020 Ma) of the Tuva-Mongolian microcontinent are believed to be the most ancient ophiolite of the Central Asian Orogenic Belt [Khain et al., 2002].The Eastern Sayan ophiolites (1020 Ma) of the Tuva-Mongolian microcontinent are believed to be the most ancient ophiolite of the Central Asian Orogenic Belt [Khain et al., 2002]

    DEPLETED SSZ TYPE MANTLE PERIDOTITES IN PROTEROZOIC EASTERN SAYAN OPHIOLITES IN SIBERIA

    Get PDF
    N.L. Dobretsov et al. [1985] first described the rock complexes in Eastern Sayan as ophiolites. Ophiolites formed in Dunzhugur island arc and were obducted onto Gargan block, a Neoarchean crystalline basement of the Tuva-Mongolian Massif (TMM), as a single nappe [Khain et al., 2002; Kuzmichev, 2004]. Zircons from plagiogranite were dated at 1021±5 Ma by multigrain TIMS and 1020±1 Ma by Pb-Pb single-grains evaporation method [Khain et al., 2002]. Later [Kuzmichev, Larionov, 2013] analysed 12 grains of detrital zircons from gravelstone of the Dunzhugur formation and obtained 206Pb/238U ages from 844±8 to 1048±12 Ma. Careful examination of these data shows that 206Pb/238U ages for concordant zircons only vary from 962±11 to 1048±12 Ma.N.L. Dobretsov et al. [1985] first described the rock complexes in Eastern Sayan as ophiolites. Ophiolites formed in Dunzhugur island arc and were obducted onto Gargan block, a Neoarchean crystalline basement of the Tuva-Mongolian Massif (TMM), as a single nappe [Khain et al., 2002; Kuzmichev, 2004]. Zircons from plagiogranite were dated at 1021±5 Ma by multigrain TIMS and 1020±1 Ma by Pb-Pb single-grains evaporation method [Khain et al., 2002]. Later [Kuzmichev, Larionov, 2013] analysed 12 grains of detrital zircons from gravelstone of the Dunzhugur formation and obtained 206Pb/238U ages from 844±8 to 1048±12 Ma. Careful examination of these data shows that 206Pb/238U ages for concordant zircons only vary from 962±11 to 1048±12 Ma

    PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    No full text
    Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts

    PETROGRAPHY AND MINERALOGY OF RETROGRADE METAPERIDOTITES FROM ALAG KHADNY ACCRETIONARY WEDGE (SW MONGOLIA): FLUID MODIFICATION IN SUPRASUBDUCTION ZONE

    No full text
    The Main Mongolian Lineament (MML) separates northern “Caledonian” tectonic province from southern “Hercynian” in SW part of Mongolia of the Central Asian Orogenic Belt (CAOB). The position of Eastern part of MML is widely discussed at recent time, since, this is an important for reconstruction of geodynamic evolution of this region. Some researchers suggest that ophiolite from the Erdene Uul and Maykhan Tsakhir Uul mountain ranges are Eastern part of an ophiolitic nappe system thrust northwards over the Dzabkhan-Baydrag continent, namely the Khantaishir and the Dariv ophiolites [Štípská et al., 2010; Buriánek et al., 2017]. Others have a different view, they suggest that investigated ophiolites refers to Gobi-Altai ophiolite system (523±5 – 518±6 Ma), which likely formed in front of the Gobi Altai microcontinent by initiation of a new southdipping subduction zone following arc–microcontinent collision in Northwest Mongolia [Jian et al., 2014]. However, ophiolites of this critical region of Mongolian the CAOB have not been investigated in detail

    GEOCHEMISTRY AND ORIGIN OF THE EASTERN SAYAN OPHIOLITES, TUVA-MONGOLIAN MICROCONTINENT (SOUTHERN SIBERIA)

    No full text
    The Eastern Sayan ophiolites (1020 Ma) of the Tuva-Mongolian microcontinent are believed to be the most ancient ophiolite of the Central Asian Orogenic Belt [Khain et al., 2002]

    DEPLETED SSZ TYPE MANTLE PERIDOTITES IN PROTEROZOIC EASTERN SAYAN OPHIOLITES IN SIBERIA

    No full text
    N.L. Dobretsov et al. [1985] first described the rock complexes in Eastern Sayan as ophiolites. Ophiolites formed in Dunzhugur island arc and were obducted onto Gargan block, a Neoarchean crystalline basement of the Tuva-Mongolian Massif (TMM), as a single nappe [Khain et al., 2002; Kuzmichev, 2004]. Zircons from plagiogranite were dated at 1021±5 Ma by multigrain TIMS and 1020±1 Ma by Pb-Pb single-grains evaporation method [Khain et al., 2002]. Later [Kuzmichev, Larionov, 2013] analysed 12 grains of detrital zircons from gravelstone of the Dunzhugur formation and obtained 206Pb/238U ages from 844±8 to 1048±12 Ma. Careful examination of these data shows that 206Pb/238U ages for concordant zircons only vary from 962±11 to 1048±12 Ma
    corecore