39 research outputs found

    Random hypergraphs and their applications

    Get PDF
    In the last few years we have witnessed the emergence, primarily in on-line communities, of new types of social networks that require for their representation more complex graph structures than have been employed in the past. One example is the folksonomy, a tripartite structure of users, resources, and tags -- labels collaboratively applied by the users to the resources in order to impart meaningful structure on an otherwise undifferentiated database. Here we propose a mathematical model of such tripartite structures which represents them as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the limit of large network size and we compare the results against observations of a real folksonomy, that of the on-line photography web site Flickr. We show that in some cases the model matches the properties of the observed network well, while in others there are significant differences, which we find to be attributable to the practice of multiple tagging, i.e., the application by a single user of many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure

    One-dimensional non-interacting fermions in harmonic confinement: equilibrium and dynamical properties

    Full text link
    We consider a system of one-dimensional non-interacting fermions in external harmonic confinement. Using an efficient Green's function method we evaluate the exact profiles and the pair correlation function, showing a direct signature of the Fermi statistics and of the single quantum-level occupancy. We also study the dynamical properties of the gas, obtaining the spectrum both in the collisionless and in the collisional regime. Our results apply as well to describe a one-dimensional Bose gas with point-like hard-core interactions.Comment: 11 pages, 5 figure

    "Supersolid" self-bound Bose condensates via laser-induced interatomic forces

    Full text link
    We show that the dipole-dipole interatomic forces induced by a single off-resonant running laser beam can lead to a self-bound pencil-shaped Bose condensate, even if the laser beam is a plane-wave. For an appropriate laser intensity the ground state has a quasi-one dimensional density modulation --- a Bose "supersolid".Comment: 4 pages, 3 eps figure

    Echo in Optical Lattices: Stimulated Revival of Breathing Oscillations

    Full text link
    We analyze a stimulated revival (echo) effect for the breathing modes of the atomic oscillations in optical lattices. The effect arises from the dephasing due to the weak anharmonicity being partly reversed in time by means of additional parametric excitation of the optical lattice. The shape of the echo response is obtained by numerically simulating the equation of motion for the atoms with subsequent averaging over the thermal initial conditions. A qualitative analysis of the phenomenon shows that the suggested echo mechanism combines the features of both spin and phonon echoes.Comment: 13 pages, 3 figure

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure

    Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space

    Get PDF
    International audienceWe present projects for future space missions using new quantum devices based on ultracold atoms. They will enable fundamental physics experiments testing quantum physics, physics beyond the standard model of fundamental particles and interactions, special relativity, gravitation and general relativity

    Radiation damping optical enhancement in cold atoms

    Get PDF
    This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/Open Access journalThe typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice. In this paper, this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms, where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure. Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0% absorption, making radiation damping experimentally accessible

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Synthesis and magnetic characterization of MnAs nanoparticles via nanoparticle conversion

    Full text link
    We report on the synthesis of ferromagnetic manganese arsenide (MnAs) nanoparticles via the conversion of primary Mn particles which are generated in an aerosol process in a spark discharge generator. After sintering and size selection in an aerosol setup, the particles are deposited on GaAs(100) B and Si(111) substrates. Subsequent conversion to MnAs particles takes place in an annealing process under a hydrogen atmosphere with an arsine background pressure. The magnetic properties are studied using a SQUID magnetometer. The annealed MnAs particles exhibit hexagonal facets and show anisotropic magnetic behaviour on GaAs(100) B substrates, whereas on Si(111) they remain spherical and show isotropic magnetic behaviour. Scanning transmission electron microscopy studies are used to confirm the conversion from Mn to MnAs
    corecore