39 research outputs found
Random hypergraphs and their applications
In the last few years we have witnessed the emergence, primarily in on-line
communities, of new types of social networks that require for their
representation more complex graph structures than have been employed in the
past. One example is the folksonomy, a tripartite structure of users,
resources, and tags -- labels collaboratively applied by the users to the
resources in order to impart meaningful structure on an otherwise
undifferentiated database. Here we propose a mathematical model of such
tripartite structures which represents them as random hypergraphs. We show that
it is possible to calculate many properties of this model exactly in the limit
of large network size and we compare the results against observations of a real
folksonomy, that of the on-line photography web site Flickr. We show that in
some cases the model matches the properties of the observed network well, while
in others there are significant differences, which we find to be attributable
to the practice of multiple tagging, i.e., the application by a single user of
many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure
One-dimensional non-interacting fermions in harmonic confinement: equilibrium and dynamical properties
We consider a system of one-dimensional non-interacting fermions in external
harmonic confinement. Using an efficient Green's function method we evaluate
the exact profiles and the pair correlation function, showing a direct
signature of the Fermi statistics and of the single quantum-level occupancy. We
also study the dynamical properties of the gas, obtaining the spectrum both in
the collisionless and in the collisional regime. Our results apply as well to
describe a one-dimensional Bose gas with point-like hard-core interactions.Comment: 11 pages, 5 figure
"Supersolid" self-bound Bose condensates via laser-induced interatomic forces
We show that the dipole-dipole interatomic forces induced by a single
off-resonant running laser beam can lead to a self-bound pencil-shaped Bose
condensate, even if the laser beam is a plane-wave. For an appropriate laser
intensity the ground state has a quasi-one dimensional density modulation --- a
Bose "supersolid".Comment: 4 pages, 3 eps figure
Echo in Optical Lattices: Stimulated Revival of Breathing Oscillations
We analyze a stimulated revival (echo) effect for the breathing modes of the
atomic oscillations in optical lattices. The effect arises from the dephasing
due to the weak anharmonicity being partly reversed in time by means of
additional parametric excitation of the optical lattice. The shape of the echo
response is obtained by numerically simulating the equation of motion for the
atoms with subsequent averaging over the thermal initial conditions. A
qualitative analysis of the phenomenon shows that the suggested echo mechanism
combines the features of both spin and phonon echoes.Comment: 13 pages, 3 figure
Mean field effects in a trapped classical gas
In this article, we investigate mean field effects for a bosonic gas
harmonically trapped above the transition temperature in the collisionless
regime. We point out that those effects can play also a role in low dimensional
system. Our treatment relies on the Boltzmann equation with the inclusion of
the mean field term.
The equilibrium state is first discussed. The dispersion relation for
collective oscillations (monopole, quadrupole, dipole modes) is then derived.
In particular, our treatment gives the frequency of the monopole mode in an
isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space
International audienceWe present projects for future space missions using new quantum devices based on ultracold atoms. They will enable fundamental physics experiments testing quantum physics, physics beyond the standard model of fundamental particles and interactions, special relativity, gravitation and general relativity
Radiation damping optical enhancement in cold atoms
This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/Open Access journalThe typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice. In this paper, this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms, where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure. Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0% absorption, making radiation damping experimentally accessible
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
Synthesis and magnetic characterization of MnAs nanoparticles via nanoparticle conversion
We report on the synthesis of ferromagnetic manganese arsenide (MnAs) nanoparticles via the conversion of primary Mn particles which are generated in an aerosol process in a spark discharge generator. After sintering and size selection in an aerosol setup, the particles are deposited on GaAs(100) B and Si(111) substrates. Subsequent conversion to MnAs particles takes place in an annealing process under a hydrogen atmosphere with an arsine background pressure. The magnetic properties are studied using a SQUID magnetometer. The annealed MnAs particles exhibit hexagonal facets and show anisotropic magnetic behaviour on GaAs(100) B substrates, whereas on Si(111) they remain spherical and show isotropic magnetic behaviour. Scanning transmission electron microscopy studies are used to confirm the conversion from Mn to MnAs