31 research outputs found
I. Flux and color variations of the quadruply imaged quasar HE 0435-1223
aims: We present VRi photometric observations of the quadruply imaged quasar
HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla
Observatory. Our aim was to monitor and study the magnitudes and colors of each
lensed component as a function of time. methods: We monitored the object during
two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data
with two independent techniques: difference imaging and PSF (Point Spread
Function) fitting.results: Between these two seasons, our results show an
evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components
in the three filters. We also found a significant increase (~0.05-0.015) in
their V-R and R-i color indices. conclusions: These flux and color variations
are very likely caused by intrinsic variations of the quasar between the
observed epochs. Microlensing effects probably also affect the brightest "A"
lensed component.Comment: 10 pages, 8 figure
High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2
We present high-precision photometry of three transits of the extrasolar
planetary system WASP-2, obtained by defocussing the telescope, and achieving
point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled
using the JKTEBOP code, and taking into account the light from the
recently-discovered faint star close to the system. The physical properties of
the WASP-2 system are derived using tabulated predictions from five different
sets of stellar evolutionary models, allowing both statistical and systematic
errorbars to be specified. We find the mass and radius of the planet to be M_b
= 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It
has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent
finding that it does not have an atmospheric temperature inversion. The first
of our transit datasets has a scatter of only 0.42 mmag with respect to the
best-fitting light curve model, which to our knowledge is a record for
ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table
OGLE-2009-BLG-092/MOA-2009-BLG-137: A Dramatic Repeating Event With the Second Perturbation Predicted by Real-Time Analysis
We report the result of the analysis of a dramatic repeating gravitational
microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light
curve is characterized by two distinct peaks with perturbations near both
peaks. We find that the event is produced by the passage of the source
trajectory over the central perturbation regions associated with the individual
components of a wide-separation binary. The event is special in the sense that
the second perturbation, occurring days after the first, was
predicted by the real-time analysis conducted after the first peak,
demonstrating that real-time modeling can be routinely done for binary and
planetary events. With the data obtained from follow-up observations covering
the second peak, we are able to uniquely determine the physical parameters of
the lens system. We find that the event occurred on a bulge clump giant and it
was produced by a binary lens composed of a K and M-type main-sequence stars.
The estimated masses of the binary components are
and , respectively, and they are separated in
projection by . The measured distance to the
lens is . We also detect the orbital motion
of the lens system.Comment: 18 pages, 5 figures, 1 tabl
MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf
We report the discovery of a planet with a high planet-to-star mass ratio in
the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations
over a 12-day interval, one of the longest for any planetary event. The host is
an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90%
confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured
extremely well, so at the best-estimated host mass, the planet mass is m_p =
2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is
determined from two "higher order" microlensing parameters. One of these, the
angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but
the other (the microlens parallax \pi_E, which is due to the Earth's orbital
motion) is highly degenate with the orbital motion of the planet. We
statistically resolve the degeneracy between Earth and planet orbital effects
by imposing priors from a Galactic model that specifies the positions and
velocities of lenses and sources and a Kepler model of orbits. The 90%
confidence intervals for the distance, semi-major axis, and period of the
planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6
yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
Jervell and Lange-Nielsen Syndrome: Novel Compound Heterozygous Mutations in the KCNQ1 in a Korean Family
The Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive syndrome characterized by congenital deafness and cardiac phenotype (QT prolongation, ventricular arrhythmias, and sudden death). JLNS has been shown to occur due to homozygous mutation in KCNQ1 or KCNE1. There have been a few clinical case reports on JLNS in Korea; however, these were not confirmed by a genetic study. We identified compound heterozygous mutations in KCNQ1 in a 5-yr-old child with JLNS, who visited the hospital due to recurrent syncope and seizures and had congenital sensorineural deafness. His electrocardiogram revealed a markedly prolonged corrected QT interval with T wave alternans. The sequence analysis of the proband revealed the presence of novel compound heterozygous deletion/splicing error mutations (c.828-830 delCTC, p.S277del/c.921G>A, p.V307V). Each mutation in KCNQ1 was identified on the maternal and paternal side. With β-blocker therapy the patient has remained symptom-free for three and a half years
Microlensing discovery of a population of very tight, very low mass binary brown dwarfs
Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries
Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star
We present the discovery and mass measurement of the cold, low-mass planet
MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This
planet has a mass of m_p = 10.4 +- 1.7 Earth masses and orbits a star of mass
M_* = 0.56 +- 0.09 Solar masses at a semi-major axis of a = 3.2 (+1.9 -0.5) AU
and an orbital period of P = 7.6 (+7.7 -1.5} yrs. The planet and host star mass
measurements are enabled by the measurement of the microlensing parallax
effect, which is seen primarily in the light curve distortion due to the
orbital motion of the Earth. But, the analysis also demonstrates the capability
to measure microlensing parallax with the Deep Impact (or EPOXI) spacecraft in
a Heliocentric orbit. The planet mass and orbital distance are similar to
predictions for the critical core mass needed to accrete a substantial gaseous
envelope, and thus may indicate that this planet is a "failed" gas giant. This
and future microlensing detections will test planet formation theory
predictions regarding the prevalence and masses of such planets.Comment: 38 pages with 7 figure
Characterizing Lenses and Lensed Stars of High-Magnification Single-lens Gravitational Microlensing Events With Lenses Passing Over Source Stars
We present the analysis of the light curves of 9 high-magnification
single-lens gravitational microlensing events with lenses passing over source
stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176,
MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436,
MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and
OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all events, we measure the linear
limb-darkening coefficients of the surface brightness profile of source stars
by measuring the deviation of the light curves near the peak affected by the
finite-source effect. For 7 events, we measure the Einstein radii and the
lens-source relative proper motions. Among them, 5 events are found to have
Einstein radii less than 0.2 mas, making the lenses candidates of very low-mass
stars or brown dwarfs. For MOA-2011-BLG-274, especially, the small Einstein
radius of mas combined with the short time scale of
days suggests the possibility that the lens is a
free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and
thus uniquely determine the physical parameters of the lens. We also find that
the measured lens mass of is consistent with that of a
star blended with the source, suggesting that the blend is likely to be the
lens. Although we find planetary signals for none of events, we provide
exclusion diagrams showing the confidence levels excluding the existence of a
planet as a function of the separation and mass ratio.Comment: 14 pages, 12 figures, 5 table
A brown dwarf orbiting an M-dwarf: MOA 2009–BLG–411L
peer reviewedContext. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. Aims: MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. Methods: Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties by using a more refined method than the classical one: we measure the interstellar absorption along the line of sight in five different passbands (VIJHK). Secondly, we model the lightcurve by using the standard technique: make (s,q,α) grids to look for local minima and refine the results by using a downhill method (Markov chain Monte Carlo). Finally, we use a Galactic model to estimate the physical properties of the lens components. Results: We find that the source star is a giant G star with radius 9 R[SUB]&sun;[/SUB]. The grid search gives two local minima, which correspond to the theoretical degeneracy s ≡ s[SUP]-1[/SUP]. We find that the lens is composed of a brown dwarf secondary of mass M[SUB]S[/SUB] = 0.05 M[SUB]&sun;[/SUB] orbiting a primary M-star of mass M[SUB]P[/SUB] = 0.18 M[SUB]&sun;[/SUB]. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries. Conclusions: As far as we are aware, this is the first detection using the microlensing technique of a binary system in our Galaxy composed of an M-star and a brown dwarf. Appendix is available in electronic form at http://www.aanda.org</A