4 research outputs found

    Parton content of the real photon: astrophysical implications

    Full text link
    We possess convincing experimental evidence for the fact that the real photon has non-trivial parton structure. On the other hand, interactions of the cosmic microwave background photons with high energy particles propagating through the Universe play an important role in astrophysics. In this context, to invoke the parton content could be convenient for calculations of the probabilities of different processes involving these photons. As an example, the cross section of inclusive resonant W+W^+ boson production in the reaction νγ→W+X\nu \gamma\to W^+X is calculated by using the parton language. Neutrino--photon deep inelastic scattering is considered.Comment: 4 pages, 2 figures. The spin states of the initial particles in the reaction νγ→W+X\nu\gamma\to W^+X are correctly treated. As a result, the corresponding cross section becomes two times greater than the one from the previous version. Some changes in the tex

    Pseudoscalar Glueball Mass: QCD vs. Lattice Gauge Theory Prediction

    Get PDF
    We study whether the pseudoscalar glueball mass in full QCD can differ from the prediction of quenched lattice calculations. Using properties of the correlator of the vacuum topological susceptibility we derive an expression for the upper bound on the QCD glueball mass. We show that the QCD pseudoscalar glueball is lighter than the pure Yang-Mills theory glueball studied in quenched lattice calculations. The mass difference between those two states is of order of 1/Nc1/N_c. The value calculated for the 0−+0^{-+} QCD glueball mass can not be reconciled with any physical state observed so far in the corresponding channel. The glueball decay constant and its production rate in J/ψJ/\psi radiative decays are calculated. The production rate is large enough to be studied experimentally.Comment: 18 pages, LaTex fil
    corecore