5 research outputs found

    Validation of bioelectrical impedance analysis for body composition assessment in children with obesity aged 8-14y

    Get PDF
    BACKGROUND & AIMS: The aim was to generate a predictive equation to assess body composition (BC) in children with obesity using bioimpedance (BIA), and avoid bias produced by different density levels of fat free mass (FFM) in this population. METHODS: This was a cross-sectional validation study using baseline data from a randomized intervention trial to treat childhood obesity. Participants were 8 to 14y (n = 315), underwent assessments on anthropometry and BC through Air Displacement Plethysmography (ADP), Dual X-Ray Absorptiometry and BIA. They were divided into a training (n = 249) and a testing subset (n = 66). In addition, the testing subset underwent a total body water assessment using deuterium dilution, and thus obtained results for the 4-compartment model (4C). A new equation to estimate FFM was created from the BIA outputs by comparison to a validated model of ADP adjusted by FFM density in the training subset. The equation was validated against 4C in the testing subset. As reference, the outputs from the BIA device were also compared to 4C. RESULTS: The predictive equation reduced the bias from the BIA outputs from 14.1% (95%CI: 12.7, 15.4) to 4.6% (95%CI: 3.8, 5.4) for FFM and from 18.4% (95%CI: 16.9, 19.9) to 6.4% (95% CI: 5.3, 7.4) for FM. Bland-Altman plots revealed that the new equation significantly improved the agreement with 4C; furthermore, the observed trend to increase the degree of bias with increasing FM and FFM also disappeared. CONCLUSION: The new predictive equation increases the precision of BC assessment using BIA in children with obesity

    The Obemat2.0 Study: A Clinical Trial of a Motivational Intervention for Childhood Obesity Treatment.

    Get PDF
    The primary aim of the Obemat2.0 trial was to evaluate the efficacy of a multicomponent motivational program for the treatment of childhood obesity, coordinated between primary care and hospital specialized services, compared to the usual intervention performed in primary care. This was a cluster randomized clinical trial conducted in Spain, with two intervention arms: motivational intervention group vs. usual care group (as control), including 167 participants in each. The motivational intervention consisted of motivational interviewing, educational materials, use of an eHealth physical activity monitor and three group-based sessions. The primary outcome was body mass index (BMI) z score increments before and after the 12 (+3) months of intervention. Secondary outcomes (pre-post intervention) were: adherence to treatment, waist circumference (cm), fat mass index (z score), fat free mass index (z score), total body water (kg), bone mineral density (z score), blood lipids profile, glucose metabolism, and psychosocial problems. Other assessments (pre and post-intervention) were: sociodemographic information, physical activity, sedentary activity, neuropsychological testing, perception of body image, quality of the diet, food frequency consumption and foods available at home. The results of this clinical trial could open a window of opportunity to support professionals at the primary care to treat childhood obesity. The clinicaltrials.gov identifier was NCT02889406

    A novel approach to assess body composition in children with obesity from density of the fat-free mass

    Get PDF
    Background & aims: Assessment of Fat Mass (FM) and fat free mass (FFM) using Air-displacement plethysmography (ADP) technique assumes constant density of FFM (DFFM) by age and sex. It has been recently shown that DFFM further varies according to body mass index (BMI), meaning that ADP body composition assessments of children with obesity could be biased if DFFM is assumed to be constant. The aim of this study was to validate the use of the calculations of DFFM (rather than constant density of the FFM) to improve accuracy of body composition assessment in children with obesity. / Methods: cross-sectional validation study in 66 children with obesity (aged 8–14 years) where ADP assessments of body composition assuming constant density (FFMBODPOD and FMBODPOD) were compared to those where DFFM was adjusted in relation to BMI (FFMadjusted and FMadjusted), and both compared to the gold standard reference, the 4-component model (FFM4C and FM4C). / Results: FFMBODPOD was overestimated by 1.50 kg (95%CI -0.68 kg, 3.63 kg) while FFMadjusted was 0.71 kg (−1.08 kg, 2.51 kg) (percentage differences compared to FFM4C were 4.9% (±2.9%) and 2.8% (±2.1%), respectively (p < 0.001)). Consistently, FM was underestimated by both methods, representing a mean difference between methods of 4.0% (±2.9%) and 6.8% (±3.8%), respectively, when compared to the reference method. The agreement and reliability of body composition assessments were improved when adjusted using calculations (adjusted models) rather than assuming constant DFFM. / Conclusions: The use of constant values for fat-free mass properties may increase bias when assessing body composition (FM and FFM) in children with obesity by two-component techniques such as ADP. Using adjusted corrections as proposed in the present work may reduce the bias by half
    corecore