106 research outputs found

    How wearing headgear affects measured head-related transfer functions

    Get PDF
    International audienceThe spatial representation of sound sources is an essential element of virtual acoustic environments (VAEs). When determining the sound incidence direction, the human auditory system evaluates monaural and binaural cues, which are caused by the shape of the pinna and the head. While spectral information is the most important cue for elevation of a sound source, we use differences between the signals reaching the left and the right ear for lateral localization. These binaural differences manifest in interaural time differences (ITDs) and interaural level differences (ILDs). In many headphone-based VAEs, head-related transfer functions (HRTFs) are used to describe the sound incidence from a source to the left and right ear, thus integrating both monaural and the binaural cues. Specific aspects, like for example the individual shape of the head and the outer ears (e.g. Bomhardt, 2017), of the torso (Brinkmann et al., 2015), and probably even of headgear (Wersenyi, 2005; Wersenyi, 2017) influence the HRTFs and thus probably as well localization and other perceptual attributes.<par>Generally speaking, spatial cues are modified by headgear, for example by wearing a baseball cap, a bicycle helmet, or a head-mounted display, which nowadays is often used in VR applications. In many real life situations, however, a good localization performance is important when wearing such items, e.g. in order to determine approaching vehicles when cycling. Furthermore, when performing psychoacoustic experiments in mixed-reality applications using head-mounted displays, the influence of the head-mounted display on the HRTFs must be considered. Effects of an HTC Vive head-mounted display on localization performance have already been shown in Ahrens et al. (2018). To analyze the influence of headgear for varying directions of incidence, measurements of HRTFs on a dense spherical sampling grid are required. However, HRTF measurements of a dummy head with various headgear are still rare, and to our knowledge only one dataset measured for an HTC Vice on a sparse grid with 64 positions is freely accessible (Ahrens, 2018).<par>This work presents high-density measurement data of HRTFs from a Neumann KU100 and a HEAD acoustics HMS II.3 dummy head, either equipped with a bicycle helmet, a baseball cap, an Oculus Rift head-mounted display, or a set of extra-aural AKG K1000 headphones. For the measurements, we used the VariSphear measurement system (BernschĂĽtz, 2010), allowing precise positioning of the dummy head at the spatial sampling positions. The various HRTF sets were captured on a full spherical Lebedev grid with 2702 points.<par>In our study, we analyze the measured datasets in terms of their spectrum, their binaural cues, and regarding their localization performance based on localization models, and compare the results to reference measurements of the dummy heads without headgear. The results show that differences to the reference without headgear vary significantly depending on the type of the headgear. Regarding the ITDs and ILDs, the analysis reveals the highest influences for the AKG K1000. While for the Oculus Rift head-mounted display, the ITDs and ILDs are mainly affected for frontal directions, only a very weak influence of the bicycle helmet and the baseball cap on ITDs and ILDs was observed. For the spectral differences to the reference the results show maximal deviations for the AKG K1000, the lowest for the Oculus Rift and the baseball cap. Furthermore, we analyzed for which incidence directions the spectrum is influenced most by the headgears. For the Oculus Rift and the baseball cap, the strongest deviations were found for contralateral sound incidence. For the bicycle helmet, the directions mostly affected are as well contralateral, but shifted upwards in elevation. Finally, the AKG K1000 headphones generally has the highest influence on the measured HRTFs, which becomes maximal for sound incidence from behind.<par>The results of this study are relevant for applications where headgears are worn and localization or other aspects of spatial hearing are considered. This could be the case, for example in mixed-reality applications where natural sound sources are presented while the listener is wearing a head-mounted display, or when investigating localization performance in certain situations, e.g. in sports activities where headgears are used. However, it is an important intention of this study to provide a freely available database of HRTF sets which is well suited for auralization purposes and which allows to further investigate the influence of headgear on auditory perception. The HRTF sets will be publicly available in the SOFA format under a Creative Commons CC BY-SA 4.0 license

    Dangerous Skyrmions in Little Higgs Models

    Full text link
    Skyrmions are present in many models of electroweak symmetry breaking where the Higgs is a pseudo-Goldstone boson of some strongly interacting sector. They are stable, composite objects whose mass lies in the range 10-100 TeV and can be naturally abundant in the universe due to their small annihilation cross-section. They represent therefore good dark matter candidates. We show however in this work that the lightest skyrmion states are electrically charged in most of the popular little Higgs models, and hence should have been directly or indirectly observed in nature already. The charge of the skyrmion under the electroweak gauge group is computed in a model-independent way and is related to the presence of anomalies in the underlying theory via the Wess-Zumino-Witten term.Comment: 31 pages, 4 figures; v2: minor changes, one reference added, version to appear in JHEP; v3: erratum added, conclusions unchange

    Classical skyrmions in SU(N)/SO(N) cosets

    Full text link
    We construct the skyrmion solutions appearing in the coset spaces SU(N)/SO(N) for N > 2 and compute their classical mass. For N = 3, the third homotopy group pi_3(SU(3)/SO(3)) = Z_4 implies the existence of two distinct solutions: the skyrmion of winding number two has spherical symmetry and is found to be the lightest non-trivial field configuration; the skyrmion and antiskyrmion of winding number plus and minus one are slightly heavier and of toroidal shape. For N >= 4, there is only one skyrmion since the third homotopy group is Z_2. It is found to have spherical symmetry and is significantly lighter than the N = 3 solutions.Comment: 14 pages, 3 figures; v2: discussion improve

    Partially Supersymmetric Composite Higgs Models

    Get PDF
    We study the idea of the Higgs as a pseudo-Goldstone boson within the framework of partial supersymmetry in Randall-Sundrum scenarios and their CFT duals. The Higgs and third generation of the MSSM are composites arising from a strongly coupled supersymmetric CFT with global symmetry SO(5) spontaneously broken to SO(4), whilst the light generations and gauge fields are elementary degrees of freedom whose couplings to the strong sector explicitly break the global symmetry as well as supersymmetry. The presence of supersymmetry in the strong sector may allow the compositeness scale to be raised to ~10 TeV without fine tuning, consistent with the bounds from precision electro-weak measurements and flavour physics. The supersymmetric flavour problem is also solved. At low energies, this scenario reduces to the "More Minimal Supersymmetric Standard Model" where only stops, Higgsinos and gauginos are light and within reach of the LHC.Comment: 28 pages. v2 minor changes and Refs. adde

    Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons

    Get PDF
    In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the `electroweak baryons' of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.Comment: 34 pages, 4 figures, additional references adde

    Discovery potential of top-partners in a realistic composite Higgs model with early LHC data

    Full text link
    Composite Higgs models provide a natural, non-supersymmetric solution to the hierarchy problem. In these models, one or more sets of heavy top-partners are typically introduced. Some of these new quarks can be relatively light, with a mass of a few hundred GeV, and could be observed with the early LHC collision data expected to be collected during 2010. We analyse in detail the collider signatures that these new quarks can produce. We show that final states with two (same-sign) or three leptons are the most promising discovery channels. They can yield a 5 sigma excess over the Standard Model expectation already with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive feature of this model. We present a new method to reconstruct their masses from their leptonic decay without relying on jets in the final state.Comment: 28 pages 11 Figures 7 Tables, minor changes, added references, matches published versio

    Higgs Low-Energy Theorem (and its corrections) in Composite Models

    Get PDF
    The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg->hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of flavor constraints improved; references added; electroweak fit updated, results unchanged. Matches published versio

    Composite Higgs Sketch

    Full text link
    The coupling of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness is reached, which would suggest that additional composites should lie well below this scale. In this paper we account for the presence of an additional spin 1 custodial triplet of rhos. We examine the implications of requiring perturbative unitarity up to the compositeness scale and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and the rho couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the spin 1 triplet. We find that they can substantially enhance the Higgs di-photon rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel where the charged rhos decay to a W-boson and a Z, which then decay leptonically. We find that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange

    Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking

    Get PDF
    We revisit the electroweak precision tests for Higgsless models of strong EWSB. We use the Vector Meson Dominance approach and express S and T via couplings characterizing vector and axial spin-1 resonances of the strong sector. These couplings are constrained by the elastic unitarity and by requiring a good UV behavior of various formfactors. We pay particular attention to the one-loop contribution of resonances to T (beyond the chiral log), and to how it can improve the fit. We also make contact with the recent studies of Conformal Technicolor. We explain why the second Weinberg sum rule never converges in these models, and formulate a condition necessary for preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE
    • …
    corecore