1,235 research outputs found

    NIEL Dose Dependence for Solar Cells Irradiated with Electrons and Protons

    Full text link
    The investigation of solar cells degradation and the prediction of its end-of-life performance is of primary importance in the preparation of a space mission. In the present work, we investigate the reduction of solar-cells' maximum power resulting from irradiations with electrons and protons. Both GaAs single junction and GaInP/GaAs/Ge triple junction solar cells were studied. The results obtained indicate how i) the dominant radiation damaging mechanism is due to atomic displacements, ii) the relative maximum power degradation is almost independent of the type of incoming particle, i.e., iii) to a first approximation, the fitted semi-empirical function expressing the decrease of maximum power depends only on the absorbed NIEL dose, and iv) the actual displacement threshold energy value (Ed=21 eV) accounts for annealing treatments, mostly due to self-annealing induced effects. Thus, for a given type of solar cell, a unique maximum power degradation curve can be determined as a function of the absorbed NIEL dose. The latter expression allows one to predict the performance of those solar cells in space radiation environment.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 23--27 October, 2013, to be published by World Scientific (Singapore

    Possible Contribution to Electron and Positron Fluxes from Pulsars and their Nebulae

    Full text link
    The AMS-02 experiment confirms the excess of positrons in cosmic rays (CRs) for energy above 10 GeV with respect to the secondary production of positrons in the interstellar medium. This is interpreted as evidence of the existence of a primary source of these particles. Possible candidates are dark matter or astrophysical sources. In this work we discuss the possible contribution due to pulsars and their nebulae. Our key assumption is that the primary spectrum of electrons and positrons at the source is the same of the well known photon spectrum observed from gamma-rays telescopes. Using a diffusion model in the Galaxy we propagate the source spectra up to the Solar System. We compare our results with the recent experiments and with the LIS modelComment: To appear in the Proceedings of the 14th ICATPP Conference, Villa Olmo 23-27 September 201

    Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: the case of Vela-X

    Full text link
    We investigate, in terms of production from pulsars and their nebulae, the cosmic ray positron and electron fluxes above ∼10\sim10 GeV, observed by the AMS-02 experiment up to 1 TeV. We concentrate on the Vela-X case. Starting from the gamma-ray photon spectrum of the source, generated via synchrotron and inverse Compton processes, we estimated the electron and positron injection spectra. Several features are fixed from observations of Vela-X and unknown parameters are borrowed from the Crab nebula. The particle spectra produced in the pulsar wind nebula are then propagated up to the Solar System, using a diffusion model. Differently from previous works, the omnidirectional intensity excess for electrons and positrons is obtained as a difference between the AMS-02 data and the corresponding local interstellar spectrum. An equal amount of electron and positron excess is observed and we interpreted this excess (above ∼\sim100 GeV in the AMS-02 data) as a supply coming from Vela-X. The particle contribution is consistent with models predicting the gamma-ray emission at the source. The input of a few more young pulsars is also allowed, while below ∼\sim100 GeV more aged pulsars could be the main contributors.Comment: Accepted for publication in Journal of High Energy Astrophysics (2015

    Harm to the global commons on trial: The role of the prevention principle in international climate adjudication

    Get PDF
    Although the climate crisis is the result of a failure to prevent environmental harm, the principle of prevention has thus far remained discrete in domestic climate litigation. Similarly, in the context of international climate adjudication, reliance on the prevention principle could seem limited by two main obstacles: its anchor in bilateralism and its normative indeterminacy. This article argues that, on the contrary, the prevention principle could serve important functions in international climate adjudication. First, it shows that climate change falls within the reach of the prevention principle, which aims to protect the environment per se as a community interest. Then it explores two argumentative scenarios that are based on different constructions of the prevention principle, conceived either as a customary duty or as a general principle of international law. In both cases, recourse to the prevention principle can offer numerous advantages, which vary depending on the objectives strategically pursued

    A dual output polarimeter devoted to the study of the Cosmic Microwave Background

    Get PDF
    We have developed a correlation radiometer at 33 GHz devoted to the search for residual polarization of the Cosmic Microwave Background (CMB). The two instruments`s outputs are linear combination of two Stokes Parameters (Q and U or U and V). The instrument is therefore directly sensitive to the polarized component of the radiation (respectively linear and circular). The radiometer has a beam-width oif 7 or 14 deg, but it can be coupled to a telescope increasing the resolution. The expected CMB polarization is at most a part per milion. The polarimeter has been designed to be sensitive to this faint signal, and it has been optimized to improve its long term stability, observing from the ground. In this contribution the performances of the instrument are presented, together with the preliminary test and observations.Comment: 12 pages, 6 figures, in print on the Proc. SPIE Conf. - August 200

    Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    Full text link
    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50 keV/nucleon up to relativistic energies.Comment: Accepted for publication in the Proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como, Italy), 7--8 October, 2010, to be published by World Scientifi

    Reactive Collisional Spectroscopy: Scalar and Vector InformationFrom Numerically Intensive Computing

    Get PDF
    Advances in computer technologies have made it possible to extend the numerical investigation of the detailed structure of reactive properties to several atom–diatom systems. This has allowed a better understanding of the energy structure of the reaction intermediate and of the role it plays when reaction occurs

    Antiproton modulation in the Heliosphere and AMS-02 antiproton over proton ratio prediction

    Full text link
    We implemented a quasi time-dependent 2D stochastic model of solar modulation describing the transport of cosmic rays (CR) in the heliosphere. Our code can modulate the Local Interstellar Spectrum (LIS) of a generic charged particle (light cosmic ions and electrons), calculating the spectrum at 1AU. Several measurements of CR antiparticles have been performed. Here we focused our attention on the CR antiproton component and the antiproton over proton ratio. We show that our model, using the same heliospheric parameters for both particles, fit the observed anti-p/p ratio. We show a good agreement with BESS-97 and PAMELA data and make a prediction for the AMS-02 experiment

    Electrical Characterization of SiPM as a Function of Test Frequency and Temperature

    Full text link
    Silicon Photomultipliers (SiPM) represent a promising alternative to classical photomultipliers, for instance, for the detection of photons in high energy physics and medical physics. In the present work, electrical characterizations of test devices - manufactured by ST Microelectronics - are presented. SiPMs with an area of 3.5x3.5 micron^2 and a cell pitch of 54 micron were manufactured as arrays of 64x64 cells and exhibiting a fill factor of 31%. The capacitance of SiPMs was measured as a function of reverse bias voltage at frequencies ranging from from 20 Hz up to 1 MHz and temperatures from 300 K down to 85 K. While leakage currents were measured at temperatures from 400 K down to 85 K. Thus, the threshold voltage - i.e., voltage corresponding to that at which the multiplication regime for the leakage current begins - could be determined as a function of temperature. Finally, an electrical model suited to reproduce the dependence of the frequency dependence of capacitance is presented.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 3-7 October, 2011, to be published by World Scientific (Singapore
    • …
    corecore