35 research outputs found

    Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics

    Full text link
    The non-existence of asymptotically flat, neutral black holes and asymptotically flat, charged black holes in the Maxwell electrodynamics, with non-trivial scalar field has been proved for a large class of scalar-tensor theories. The no-scalar-hair theorems, however, do not apply in the case of non-linear electrodynamics. In the present work numerical solutions describing charged black holes coupled to Born-Infeld type non-linear electrodynamics in scalar-tensor theories of gravity with massless scalar field are found. The causal structure and properties of the solutions are studied, and a comparison between these solutions and the corresponding solutions in the General Relativity is made. The presence of the scalar field leads to a much more simple causal structure. The present class of black holes has a single, non-degenerate horizon, i.e., its causal structure resembles that of the Schwarzschild black hole.Comment: 12 pages, 4 figures, PR

    Boson stars in massive dilatonic gravity

    Get PDF
    We study equilibrium configurations of boson stars in the framework of a class scalar-tensor theories of gravity with massive gravitational scalar (dilaton). In particular we investigate the influence of the mass of the dilaton on the boson star structure. We find that the masses of the boson stars in presence of dilaton are close to those in general relativity and they are sensitive to the ratio of the boson mass to the dilaton mass within a typical few percent. It turns out also that the boson star structure is mainly sensitive to the mass term of the dilaton potential rather to the exact form of the potential.Comment: 9 pages, latex, 9 figures, one figure dropped, new comments added, new references added, typos correcte

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    On the planning of search experiments

    No full text

    Perturbation bounds in connection with singular value decomposition

    No full text
    corecore