16 research outputs found

    Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei

    Full text link
    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B.pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein

    Diagnostic Test Generation for Statistical Bug Localization using Evolutionary Computation

    Full text link
    Verification is increasingly becoming a bottleneck in the process of designing electronic circuits. While there exists several verification tools that assist in detecting occurrences of design errors, or bugs, there is a lack of solutions for accurately pin-pointing the root causes of these errors. Statistical bug localization has proven to be an approach that scales up to large designs and is widely utilized both in debugging hardware and software. However, the accuracy of localization is highly dependent on the quality of the stimuli. In this paper we formulate diagnostic test set generation as a task for an evolutionary algorithm, and propose dedicated fitness functions that closely correlate with the bug localization capabilities. We perform experiments on the register-transfer level design of the Plasma microprocessor coupling an evolutionary test-pattern generator and a simulator for fitness evaluation. As a result, the diagnostic resolution of the tests is significantly improved

    Diagnostic Test Generation for Statistical Bug Localization using Evolutionary Computation

    Full text link
    Verification is increasingly becoming a bottleneck in the process of designing electronic circuits. While there exists several verification tools that assist in detecting occurrences of design errors, or bugs, there is a lack of solutions for accurately pin-pointing the root causes of these errors. Statistical bug localization has proven to be an approach that scales up to large designs and is widely utilized both in debugging hardware and software. However, the accuracy of localization is highly dependent on the quality of the stimuli. In this paper we formulate diagnostic test set generation as a task for an evolutionary algorithm, and propose dedicated fitness functions that closely correlate with the bug localization capabilities. We perform experiments on the register-transfer level design of the Plasma microprocessor coupling an evolutionary test-pattern generator and a simulator for fitness evaluation. As a result, the diagnostic resolution of the tests is significantly improved

    Cyclic steps at the head of channelized features along the calabrian margin (Southern Tyrrhenian Sea, Italy)

    Full text link
    High-resolution multibeam bathymetry enabled to identify coaxial trains of crescent-shaped bedforms within the heads of channelized features lying in shallow-water sectors along the tectonically-controlled Calabrian Margin. These bedforms have wavelengths of tens or few hundreds of meters and wave heights of some meters, and their crest-lines trend perpendicular to the maximum slope gradients. Repeated multibeam surveys realized in 2007, 2008, 2012 and 2013 showed a rapid and significant morphological evolution of the channel’s floors, with the generation or upslope migration of the bedforms. Based on their size, upslope migration and similarities with crescent-shaped bedforms recognized in other active canyon's heads, these features can be interpreted as cyclic steps. The bedforms are, in fact, formed or modified by frequent slope failures and related sedimentary flows, whose occurrence is favored by the concurrent presence of several predisposing and triggering mechanisms, such as high sedimentary rate due to steep coastal creek, severe storms and seismic events

    A Functional Approach for Testing the Reorder Buffer Memory

    Full text link
    Superscalar processors may have the ability to execute instructions out-of-order to better exploit the internal hardware and to maximize the performance. To maintain the in-order instructions commitment and to guarantee the correctness of the final results (as well as precise exception management), the Reorder Buffer (ROB) is used. From the architectural point of view, the ROB is a memory array of several thousands of bits that must be tested against hardware faults to ensure a correct behavior of the processor. Since it is deeply embedded within the microprocessor circuitry, the most straightforward approach to test the ROB is through Built-In Self-Test solutions, which are typically adopted by manufacturers for end-of-production test. However, these solutions may not always be used for the test during the operational phase (in-field test) which aims at detecting possible hardware faults arising when the electronic systems works in its target environment. In fact, these solutions require the usage of test infrastructures that may not be accessible and/or documented, or simply not usable during the operational phase. This paper proposes an alternative solution, based on a functional approach, in which the test is performed by forcing the processor to execute a specially written test program, and checking the behavior of the processor. This approach can be adopted for in-field test, e.g., at the power-on, power-off, or during the time slots unused by the system application. The method has been validated resorting to both an architectural and a memory fault simulato

    Rejuvenation of nanoscale logic at NBTI-critical paths using evolutionary TPG

    Full text link
    One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the threshold voltage of pMOS transistors, which slows down signal propagation along the paths between flip-flops. As a consequence, NBTI may cause transient faults and, ultimately, permanent circuit functional failure. In this paper, we propose an innovative NBTI mitigation approach by rejuvenation of nanoscale logic along NBTI-critical paths. The method is based on hierarchical NBTI-critical paths identification and rejuvenation stimuli generation using an Evolutionary Algorithm. The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay. This rejuvenation procedure is to be applied to the circuit as an execution overhead at predefined periods. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. Experimental results are demonstrated by electrical simulations of an ALU circuit design

    Rejuvenation of nanoscale logic at NBTI-critical paths using evolutionary TPG

    Full text link
    One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the threshold voltage of pMOS transistors, which slows down signal propagation along the paths between flip-flops. As a consequence, NBTI may cause transient faults and, ultimately, permanent circuit functional failure. In this paper, we propose an innovative NBTI mitigation approach by rejuvenation of nanoscale logic along NBTI-critical paths. The method is based on hierarchical NBTI-critical paths identification and rejuvenation stimuli generation using an Evolutionary Algorithm. The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay. This rejuvenation procedure is to be applied to the circuit as an execution overhead at predefined periods. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. Experimental results are demonstrated by electrical simulations of an ALU circuit design

    J Biol Chem

    Full text link
    The antithrombin (AT) binding properties of heparin and low molecular weight heparins are strongly associated to the presence of the pentasaccharide sequence AGA*IA (ANAc,6S-GlcUA-ANS,3,6S-I2S-ANS,6S). By using the highly chemoselective depolymerization to prepare new ultra low molecular weight heparin and coupling it with the original separation techniques, it was possible to isolate a polysaccharide with a biosynthetically unexpected structure and excellent antithrombotic properties. It consisted of a dodecasaccharide containing an unsaturated uronate unit at the nonreducing end and two contiguous AT-binding sequences separated by a nonsulfated iduronate residue. This novel oligosaccharide was characterized by NMR spectroscopy, and its binding with AT was determined by fluorescence titration, NMR, and LC-MS. The dodecasaccharide displayed a significantly increased anti-FXa activity compared with those of the pentasaccharide, fondaparinux, and low molecular weight heparin enoxaparin
    corecore