305 research outputs found
1,3-Butadiene: linking metabolism, dosimetry, and mutation induction.
There is increasing concern for the potential adverse health effects of human exposures to chemical mixtures. To better understand the complex interactions of chemicals within a mixture, it is essential to develop a research strategy which provides the basis for extrapolating data from single chemicals to their behavior within the chemical mixture. 1,3-Butadiene (BD) represents an interesting case study in which new data are emerging that are critical for understanding interspecies differences in carcinogenic/genotoxic response to BD. Knowledge regarding mechanisms of BD-induced carcinogenicity provides the basis for assessing the potential effects of mixtures containing BD. BD is a multisite carcinogen in B6C3F1 mice and Sprague-Dawley rats. Mice exhibit high sensitivity relative to the rat to BD-induced tumorigenesis. Since it is likely that BD requires metabolic activation to mutagenic reactive epoxides that ultimately play a role in carcinogenicity of the chemical, a quantitative understanding of the balance of activation and inactivation is essential for improving our understanding and assessment of human risk following exposure to BD and chemical mixtures containing BD. Transgenic mice exposed to 625 ppm BD for 6 hr/day for 5 days exhibited significant mutagenicity in the lung, a target organ for the carcinogenic effect of BD in mice. In vitro studies designed to assess interspecies differences in the activation of BD and inactivation of BD epoxides reveal that significant differences exist among mice, rats, and humans. In general, the overall activation/detoxication ratio for BD metabolism was approximately 10-fold higher in mice compared to rats or humans.(ABSTRACT TRUNCATED AT 250 WORDS
Evaluating the validity and applicable domain of the toxic load model: Impact of concentration vs. time profile on inhalation lethality of hydrogen cyanide
The ten Berge model (or ‘‘toxic load’’ model) is often used to estimate the acute toxicity for varying combinations of inhaled concentration and duration. Expressed as Cn X t = toxic load (TL), TLs are assumed constant for various combinations of concentration (C) and time (t). Experimental data in a recent acute inhalation study of rats exposed to time-varying concentrations of hydrogen cyanide (HCN) supported the validity of the toxic load model except under very brief, discontinuous, high concentration exposures. In the present investigation, experiments were conducted to extend the evaluation of the applicable domain of the model for acute lethality of HCN in the rat (cumulative exposure range of 2900–11,000 ppm min). The lethality of HCN over very short (\u3c5 min) durations of high concentrations did not conform to the toxic load model. A value of n = 1.57 was determined for uninterrupted exposures P5 min. For 30-min exposures, the presence or absence of a gap between two exposure pulses of different concentrations, the relative duration, relative height, and the ordering of the pulses (low then high, vs. high then low) did not appear to have a meaningful impact on the toxic load required for median lethality
Recommended from our members
Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy
We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics
Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species
<p>Abstract</p> <p>Background</p> <p>Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the <it>Pa</it>SSU intron in the rRNA small subunit gene of <it>Phialophora americana </it>isolate Wang 1046 is capable of <it>in vitro </it>splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme.</p> <p>Findings</p> <p>Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of <it>Phialophora </it>isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of <it>Phialophora</it>, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, <it>Porpidia crustulata </it>and <it>Arthonia lapidicola</it>.</p> <p>Conclusions</p> <p>The small putative group I introns in <it>Phialophora </it>have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses.</p
Global distribution of two fungal pathogens threatening endangered sea turtles
This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD
The nitridation of ZnO nanowires
ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation
Single Mode Lasing from Hybrid Hemispherical Microresonators
Enormous attention has been paid to optical microresonators which hold a great promise for microlasers as well as fundamental studies in cavity quantum electrodynamics. Here we demonstrate a three-dimensional (3D) hybrid microresonator combining self-assembled hemispherical structure with a planar reflector. By incorporating dye molecules into the hemisphere, optically pumped lasing phenomenon is observed at room temperature. We have studied the lasing behaviors with different cavity sizes, and particularly single longitudinal mode lasing from hemispheres with diameter ∼15 μm is achieved. Detailed characterizations indicate that the lasing modes shift under varying pump densities, which can be well-explained by frequency shift and mode hopping. This work provides a versatile approach for 3D confined microresonators and opens an opportunity to realize tunable single mode microlasers
Evolution of CDC42, a putative virulence factor triggering meristematic growth in black yeasts
The cell division cycle gene (CDC42) controlling cellular
polarization was studied in members of Chaetothyriales. Based on
ribosomal genes, ancestral members of the order exhibit meristematic growth in
view of their colonization of inert surfaces such as rock, whereas in derived
members of the order the gene is a putative virulence factor involved in
expression of the muriform cell, the invasive phase in human
chromoblastomycosis. Specific primers were developed to amplify a portion of
the gene of 32 members of the order with known position according to ribosomal
phylogeny. Phylogeny of CDC42 proved to be very different. In all
members of Chaetohyriales the protein sequence is highly conserved.
In most species, distributed all over the phylogenetic tree, introns and
3rd codon positions are also invariant. However, a number of
species had paralogues with considerable deviation in non-coding exon
positions, and synchronous variation in introns, although non-synonomous
variation had remained very limited. In some strains both orthologues and
paralogues were present. It is concluded that CDC42 does not show any
orthologous evolution, and that its paralogues haves the same function but are
structurally relaxed. The variation or absence thereof could not be linked to
ecological changes, from rock-inhabiting to pathogenic life style. It is
concluded that eventual pathogenicity in Chaetothyriales is not
expressed at the DNA level in CDC42 evolution
Physiologically based pharmacokinetic modeling of arterial – antecubital vein concentration difference
BACKGROUND: Modeling of pharmacokinetic parameters and pharmacodynamic actions requires knowledge of the arterial blood concentration. In most cases, experimental measurements are only available for a peripheral vein (usually antecubital) whose concentration may differ significantly from both arterial and central vein concentration. METHODS: A physiologically based pharmacokinetic (PBPK) model for the tissues drained by the antecubital vein (referred to as "arm") is developed. It is assumed that the "arm" is composed of tissues with identical properties (partition coefficient, blood flow/gm) as the whole body tissues plus a new "tissue" representing skin arteriovenous shunts. The antecubital vein concentration depends on the following parameters: the fraction of "arm" blood flow contributed by muscle, skin, adipose, connective tissue and arteriovenous shunts, and the flow per gram of the arteriovenous shunt. The value of these parameters was investigated using simultaneous experimental measurements of arterial and antecubital concentrations for eight solutes: ethanol, thiopental, (99)Tc(m)-diethylene triamine pentaacetate (DTPA), ketamine, D(2)O, acetone, methylene chloride and toluene. A new procedure is described that can be used to determine the arterial concentration for an arbitrary solute by deconvolution of the antecubital concentration. These procedures are implemented in PKQuest, a general PBPK program that is freely distributed . RESULTS: One set of "standard arm" parameters provides an adequate description of the arterial/antecubital vein concentration for ethanol, DTPA, thiopental and ketamine. A significantly different set of "arm" parameters was required to describe the data for D(2)O, acetone, methylene chloride and toluene – probably because the "arm" is in a different physiological state. CONCLUSIONS: Using the set of "standard arm" parameters, the antecubital vein concentration can be used to determine the whole body PBPK model parameters for an arbitrary solute without any additional adjustable parameters. Also, the antecubital vein concentration can be used to estimate the arterial concentration for an arbitrary input for solutes for which no arterial concentration data is available
- …