2,421 research outputs found
Learning Ground Traversability from Simulations
Mobile ground robots operating on unstructured terrain must predict which
areas of the environment they are able to pass in order to plan feasible paths.
We address traversability estimation as a heightmap classification problem: we
build a convolutional neural network that, given an image representing the
heightmap of a terrain patch, predicts whether the robot will be able to
traverse such patch from left to right. The classifier is trained for a
specific robot model (wheeled, tracked, legged, snake-like) using simulation
data on procedurally generated training terrains; the trained classifier can be
applied to unseen large heightmaps to yield oriented traversability maps, and
then plan traversable paths. We extensively evaluate the approach in simulation
on six real-world elevation datasets, and run a real-robot validation in one
indoor and one outdoor environment.Comment: Webpage: http://romarcg.xyz/traversability_estimation
Electronic phase separation near the superconductor-insulator transition of Nd1+xBa2−xCu3O7−δ thin films studied by an electric-field-induced doping effect
We report a detailed study of the transport properties of Nd(1+x)Ba(2-x)Cu(3)O(7-delta) thin films with doping changed by field effect. The data cover the whole superconducting to insulating transition and show remarkable Similarities with the effect of chemical doping in high critical temperature superconductors. The results suggest that the add-on of carriers is accompanied by an electronic phase separation, independent on the details of the doping mechanism
- …