148 research outputs found
Effects of Probiotic Supplementation on Gastrointestinal, Sensory and Core Symptoms in Autism Spectrum Disorders: A Randomized Controlled Trial
The microbiota-gut-brain axis has been recently recognized as a key modulator of neuropsychiatric health. In this framework, probiotics (recently named “psychobiotics”) may modulate brain activity and function, possibly improving the behavioral profiles of children with Autism Spectrum Disorder (ASD). We evaluated the effects of probiotics on autism in a double-blind randomized, placebo-controlled trial of 85 preschoolers with ASD (mean age, 4.2 years; 84% boys). Participants were randomly assigned to probiotics (De Simone Formulation) (n=42) or placebo (n=43) for six months. Sixty-three (74%) children completed the trial. No differences between groups were detected on the primary outcome measure, the Total Autism Diagnostic Observation Schedule - Calibrated Severity Score (ADOS-CSS). An exploratory secondary analysis on subgroups of children with or without Gastrointestinal Symptoms (GI group, n= 30; NGI group, n=55) revealed in the NGI group treated with probiotics a significant decline in ADOS scores as compared to that in the placebo group, with a mean reduction of 0.81 in Total ADOS CSS and of 1.14 in Social-Affect ADOS CSS over six months. In the GI group treated with probiotics we found greater improvements in some GI symptoms, adaptive functioning, and sensory profiles than in the GI group treated with placebo. These results suggest potentially positive effects of probiotics on core autism symptoms in a subset of ASD children independent of the specific intermediation of the probiotic effect on GI symptoms. Further studies are warranted to replicate and extend these promising findings on a wider population with subsets of ASD patients which share targets of intervention on the microbiota-gut-brain axis. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02708901
Angiopoietin-like protein 4 overexpression in visceral adipose tissue from obese subjects with impaired glucose metabolism and relationship with lipoprotein lipase
Angiopoietin-like protein 4 (ANGPTL4) regulates lipid partitioning by inhibiting circulating and tissue lipoprotein lipase (LPL); ANGPTL4 loss-of-function variants improve insulin sensitivity and reduce type 2 diabetes (T2D) risk with mechanisms partially unknown. This study was designed to explore metabolic implications of differential ANGPTL4 and LPL expression in human adipose tissue (AT). We recruited eighty-eight obese individuals, with and without abnormal glucose metabolism (AGM), undergoing bariatric surgery; visceral AT (VAT) fragments were obtained intra-operatively and analyzed by immunohistochemistry and mRNA by rt-PCR. Data on hepatic ANGPTL4 mRNA were available for 40 participants. VAT ANGPTL4 expression was higher in AGM individuals than in those with normal glucose tolerance (NGT) and associated with VAT inflammation, insulin resistance, and presence of adipocyte size heterogeneity. Increased ANGPTL4 was associated with AGM with OR = 5.1 (95% C.I.: 1.2–23; p = 0.02) and AUROC = 0.76 (95% C.I.: 1.2–23; p < 0.001). High LPL was associated with the detection of homogeneous adipocyte size, reduced microvessel density, and higher HIF-1α levels and inversely correlated to blood transaminases. In conclusion, in obese individuals, VAT ANGPTL4 levels are increased in the presence of local inflammation and AGM. Conversely, higher LPL expression describes a condition of increased lipid storage in adipocytes, which may serve as a protective mechanism against ectopic fat accumulation and related metabolic disease in obesity
Heavy Liquid Metal Natural Circulation in a One -Dimensional Loop
ABSTRACT The ENEA Brasimone Research Centre since 1999 is strongly involved in the national and European research programmes performed in the field of heavy liquid metal technology aiming at the development of critical (LFR) and subcritical (ADS) nuclear systems. In particular, in the frame of the IP-EUROTRANS, (6th Framework Program EU), ENEA assumed the commitment to perform an integral experiment with the aim to reproduce the primary flow path of a HLM pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This new experimental activity, named ICE "Integral Circulation Experiment", will be performed by an appropriate test section designed to be installed in the CIRCE facility. In order to support the ICE activity, as well as characterise the natural and gas enhanced circulation flow regimes in a HLM loop, qualify test procedures, components nuclear relevant, a new facility was designed and built up by Brasimone Research Centre, named NACIE "NAtural CIrculation Experiment". The paper reports a detailed description of the loop and the main experimental results carried out from the natural circulation tests already performed on the NACIE loop. Numerical simulations have been performed in collaboration with the University of Pisa, adopting the RELAP5/Mod3.3 system code modified to allow for LBE as a cooling fluid. The aim of the performed post-test calculations is to compare the code response with the experimental results under the natural circulation flow regime, allowing to qualify the adopted nodalisation as well as the performance of the code when employed on HLM loop
HCC development is associated to peripheral insulin resistance in a mouse model of NASH
NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl 4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+ CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD. © 2014 De Minicis et al
- …