72 research outputs found
Attosecond double-slit experiment
A new scheme for a double-slit experiment in the time domain is presented.
Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of
attosecond duration for photoionization. Fringes in the angle-resolved energy
spectrum of varying visibility depending on the degree of which-way information
are observed. A situation in which one and the same electron encounters a
single and a double slit at the same time is discussed. The investigation of
the fringes makes possible interferometry on the attosecond time scale. The
number of visible fringes, for example, indicates that the slits are extended
over about 500as.Comment: 4 figure
Enhanced structural correlations accelerate diffusion in charge-stabilized colloidal suspensions
Theoretical calculations for colloidal charge-stabilized and hard sphere
suspensions show that hydrodynamic interactions yield a qualitatively different
particle concentration dependence of the short-time self-diffusion coefficient.
The effect, however, is numerically small and hardly accessible by conventional
light scattering experiments. Applying multiple-scattering decorrelation
equipment and a careful data analysis we show that the theoretical prediction
for charged particles is in agreement with our experimental results from
aqueous polystyrene latex suspensions.Comment: 1 ps-file (MS-Word), 14 page
Factorization scheme and scale dependence in diffractive dijet production at low Q^2
We calculate diffractive dijet production in deep-inelastic scattering at
next-to-leading order of perturbative QCD, including contributions from direct
and resolved photons, and compare our predictions to preliminary data from the
H1 collaboration at HERA. We study how the cross section depends on the
factorization scheme and scale M_\gamma at the virtual photon vertex for the
occurrence of factorization breaking. The strong M_\gamma-dependence, which is
present when only the resolved cross section is suppressed, is tamed by
introducing the suppression also into the initial-state NLO correction of the
direct part.Comment: 14 pages, 6 figure
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
Accelerator mass spectrometry measurements of the 13C(n,Îł)14C and 14N(n,p)14C cross sections
The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the C13(n,Îł)C14 and the N14(n,p)C14 cross sections, which act as a neutron poison in s-process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for kT=25 keV, and also at higher energies between En=123 and 182Â keV. After neutron irradiation the produced amount of C14 in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For C13(n,Îł) we find a four times smaller cross section around kT=25 keV than a previous measurement. For N14(n,p), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2Mâ initial mass, and solar and 1/10th solar metallicity
Diffractive Dijet Production at HERA
We present recent experimental data from the H1 and ZEUS Collaborations at HERA for diffractive dijet production in deep-inelastic scattering (DIS) and photoproduction and compare them with next-to-leading order (NLO) QC
- âŠ