364 research outputs found

    A z=0.9 supercluster of X-ray luminous, optically-selected, massive galaxy clusters

    Full text link
    We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of ~5x10^14 Msun. The X-ray masses are consistent with those inferred from optical--X-ray scaling relations established at lower redshift. A strongly-lensed z~4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS2319+00 supercluster are separated from their nearest neighbor by a mere <3 Mpc in the plane of the sky and likely <10 Mpc along the line-of-sight, and we interpret this structure as the high-redshift antecedent of massive (~10^15 Msun) z~0.5 clusters such as MS0451.5-0305.Comment: ApJ Letters accepted. 5 pages in emulateapj, 3 figure

    Spectroscopy of moderately high-redshift RCS-1 clusters

    Full text link
    We present spectroscopic observations of 11 moderately high-redshift (z~0.7- 1.0) clusters from the first Red-Sequence Cluster Survey (RCS-1). We find excellent agreement between the red-sequence estimated redshift and the spectroscopic redshift, with a scatter of 10% at z>0.7. At the high-redshift end (z>~0.9) of the sample, we find two of the systems selected are projections of pairs of comparably rich systems, with red-sequences too close to discriminate in (R-z') colour. In one of these systems, the two components are close enough to be physically associated. For a subsample of clusters with sufficient spectroscopic members, we examine the correlation between B_gcR (optical richness) and the dynamical mass inferred from the velocity dispersion. We find these measurements to be compatible, within the relatively large uncertainties, with the correlation established at lower redshift for the X-ray selected CNOC1 clusters and also for a lower redshift sample of RCS-1 clusters. Confirmation of this and calibration of the scatter in the relation will require larger samples of clusters at these and higher redshifts. [abridged]Comment: AJ accepted. 30 pages, 7 figures (figure 5 reduced quality

    Pair Analysis of Field Galaxies from the Red-Sequence Cluster Survey

    Full text link
    We study the evolution of the number of close companions of similar luminosities per galaxy (Nc) by choosing a volume-limited subset of the photometric redshift catalog from the Red-Sequence Cluster Survey (RCS-1). The sample contains over 157,000 objects with a moderate redshift range of 0.25 < z < 0.8 and absolute magnitude in Rc (M_Rc) < -20. This is the largest sample used for pair evolution analysis, providing data over 9 redshift bins with about 17,500 galaxies in each. After applying incompleteness and projection corrections, Nc shows a clear evolution with redshift. The Nc value for the whole sample grows with redshift as (1+z)^m, where m = 2.83 +/- 0.33 in good agreement with N-body simulations in a LCDM cosmology. We also separate the sample into two different absolute magnitude bins: -25 < M_Rc < -21 and -21 < M_Rc < -20, and find that the brighter the absolute magnitude, the smaller the m value. Furthermore, we study the evolution of the pair fraction for different projected separation bins and different luminosities. We find that the m value becomes smaller for larger separation, and the pair fraction for the fainter luminosity bin has stronger evolution. We derive the major merger remnant fraction f_rem = 0.06, which implies that about 6% of galaxies with -25 < M_Rc < -20 have undergone major mergers since z = 0.8.Comment: ApJ, in pres

    Properties of galaxy dark matter halos from weak lensing

    Full text link
    We present the results of a study of weak lensing by galaxies based on 45.5 deg2^2 of RCR_C band imaging data from the Red-Sequence Cluster Survey (RCS). We present the first weak lensing detection of the flattening of galaxy dark matter halos. We use a simple model in which the ellipticity of the halo is ff times the observed ellipticity of the lens. We find a best fit value of f=0.77−0.21+0.18f=0.77^{+0.18}_{-0.21}, suggesting that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33−0.09+0.07=0.33^{+0.07}_{-0.09}, in fair agreement with results from numerical simulations of CDM. This result provides strong support for the existence of dark matter, as an isotropic lensing signal is excluded with 99.5% confidence. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and an NFW profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The best fit NFW model yields a mass M200=(8.4±0.7±0.4)×1011h−1M⊙M_{200}=(8.4\pm0.7\pm0.4)\times 10^{11} h^{-1} M_\odot and a scale radius rs=16.2−2.9+3.6h−1r_s=16.2^{+3.6}_{-2.9} h^{-1} kpc. This value for the scale radius is in excellent agreement with predictions from numerical simulations for a halo of this mass.Comment: Significantly revised version, accepted for publication in ApJ 11 pages, 6 figure
    • …
    corecore