287 research outputs found
On the quiescence of the Hubble flow in the vicinity of the Local Group
Cepheid distances of local galaxies (<7 Mpc) are used to study the very
nearby velocity field, as pioneered by Sandage (Sandage 1986) who also pointed
out its remarkable properties: linearity and quietness. The new data show that
the velocity dispersion in the distance range as seen from the barycentre of
the Local Group 1-8 Mpc is as low as 38 km/sec. The local rate of expansion
coincides with the global Hubble constant. Down to 1.5 Mpc we cannot detect a
deviation from the linear Hubble flow. This puts an upper limit for the mass of
the Local Group, for a wide class of Friedman models, including those with the
cosmological constant.Comment: 4 pages, 3 figures. Accepted to Astron. Astrophys. Letter
Properties of Quasar-Galaxy Associations and Gravitational Mesolensing by Halo Objects
A new catalog of 8382 close quasar-galaxy pairs is presented. The catalog was
composed using published catalogs of quasars and active galactic nuclei
containing 11358 objects, as well as the LEDA catalog of galaxies, which
contains on the order of 100 thousand objects. The search for pairs was carried
out in such a way that the linear distance between the galaxy and projected
quasar does not exceed 150kpc. Based on these new data, the dependence of the
number of pairs on a=z_G/z_Q is analysed, where z_G and z_Q are the redshifts
of the galaxy and quasar, respectively, revealing an excess of pairs with a<0.1
and a>0.9. This means that the galaxies in pairs are preferably located close
to either the observer or the quasar and avoid intermediate distances along the
line of sight to the quasar. Computer simulations demonstrate that it is not
possible to explain this number of pairs with the observed distribution in a as
the result of chance positional coincidences with a uniform spatial
distribution of galaxies. Data on globular clusters show that the excess of
pairs with a0.9 is consistent with the hypothesis that we are
observing distant compact objects that are strongly gravitationally lensed by
transparent lenses with a King mass distribution located in the halos of nearby
galaxies. The Hubble diagram for galaxies and quasars is presented.
Observational tests of the mesolensing hypothesis are formulated.Comment: 11 pages, 7 figure
Conceptual Problems of Fractal Cosmology
This report continues recent Peebles-Turner debate "Is cosmology solved?" and
considers the first results for Sandage's program for "Practical cosmology". A
review of conceptual problems of modern cosmological models is given, among
them: the nature of the space expansion; recession velocities of distant
galaxies more than velocity of light; cosmological Friedmann force; continuous
creation of gravitating mass in Friedmann's equation; cosmological pressure is
not able to produce a work; cosmological gravitational frequency shift;
Friedmann-Holtsmark paradox; the problem of the cosmological constant;
Einstein's and Mandelbrot's Cosmological Principles; fractality of observed
galaxy distribution; Sandage's 21st problem: Hubble - de Vaucouleurs paradox;
quantum nature of gravity force.Comment: 17 pages, no Figures, report presented at Gamow Memorial Conference,
August 1999, St.-Petersburg, Russi
Classical Cosmological Tests for Galaxies of the Hubble Ultra Deep Field
Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of
galaxies for which the angular sizes, surface brightness, photometric
redshifts, and absolute magnitudes are found. The catalog contains a total of
about 4000 galaxies identified at a high signal-to-noise ratio, which allows
the cosmological relations angular size{redshift and surface
brightness-redshift to be analyzed. The parameters of the evolution of linear
sizes and surface brightness of distant galaxies in the redshift interval
0.5-6.5 are estimated in terms of a grid of cosmological models with different
density parameters. The distribution of photometric redshifts of galaxies is
analyzed and possible superlarge inhomogeneities in the radial distribution of
galaxies are found with scale lengths as large as 2000 Mpc.Comment: 23 pages, 9 figures, 1 tabl
Unfolded protein response is involved in the pathology of human congenital hypothyroid goiter and rat non-goitrous congenital hypothyroidism
Copyright: Copyright 2008 Elsevier B.V., All rights reserved.The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the protein folding and processing capacity of the endoplasmic reticulum (ER). The UPR is induced by the pharmacological agents that perturb ER functions but is also activated upon excessive accumulation of the mutant secretory proteins that are unable to attain correct three-dimensional structure and are thus retained in the ER. Such defects in intracellular protein transport underlie the development of a number of phenotypically diverse inherited pathologies, termed endoplasmic reticulum storage diseases (ERSD). We have studied UPR development in two similar ERSDs, human congenital goiter caused by the C1264R and C1996S mutations in the thyroglobulin (Tg) gene and non-goitrous congenital hypothyroidism in rdw dwarf rats determined by the G2320R Tg mutation. In both cases, these mutations rendered Tg incapable of leaving the ER. A major ER chaperone immunoglobulin-binding protein (BiP), and a novel putative escort chaperone endoplasmic reticulum protein 29 KDa (ERp29) were found to be associated with Tg, which might be interpreted as the contribution of the quality control machinery to the previously shown retention of Tg in the ER. We have extended our earlier observations of ER chaperone induction with the identification of the additional ER (ERp29, ERp72, calreticulin, protein disulfide isomerase (PDI)), cytoplasmic (heat shock protein (HSP)70, HSP90) and mitochondrial (mtHSP70) upregulated chaperones and folding enzymes. Activation of the transcriptional arm of UPR, as judged by the appearance of the spliced (active) form of X-box binding protein (XBP1) and processed activating transcription factor 6 (ATF6) transcription factors was suggested to contribute to the overexpression of the ER chaperones. The processing of ATF6 was observed in both human and rat tissues with Tg mutations. Whereas, in human tissues, weak splicing of XBP1 mRNA was detected only in the C1264R mutant, all rat thyroids including wild-type contained significant amounts of the spliced form of XBP1 as opposed to human liver and rat brain tissues, implying the existence of a previously unknown tissue-specific regulation of XBP1 processing.publishersversionPeer reviewe
Classical evolution of fractal measures on the lattice
We consider the classical evolution of a lattice of non-linear coupled
oscillators for a special case of initial conditions resembling the equilibrium
state of a macroscopic thermal system at the critical point. The displacements
of the oscillators define initially a fractal measure on the lattice associated
with the scaling properties of the order parameter fluctuations in the
corresponding critical system. Assuming a sudden symmetry breaking (quench),
leading to a change in the equilibrium position of each oscillator, we
investigate in some detail the deformation of the initial fractal geometry as
time evolves. In particular we show that traces of the critical fractal measure
can sustain for large times and we extract the properties of the chain which
determine the associated time-scales. Our analysis applies generally to
critical systems for which, after a slow developing phase where equilibrium
conditions are justified, a rapid evolution, induced by a sudden symmetry
breaking, emerges in time scales much shorter than the corresponding relaxation
or observation time. In particular, it can be used in the fireball evolution in
a heavy-ion collision experiment, where the QCD critical point emerges, or in
the study of evolving fractals of astrophysical and cosmological scales, and
may lead to determination of the initial critical properties of the Universe
through observations in the symmetry broken phase.Comment: 15 pages, 15 figures, version publiced at Physical Review
Comparing the performance of 850 GHz integrated bias-tee superconductor-insulator-superconductor (SIS) mixers with single- and parallel-junction tuner
We present and compare the design and performance of two 850 GHz radial probe fed superconductor-insulator-superconductor mixers, where the antenna is aligned perpendicular to the E-Plane of the input full-height rectangular waveguide connected to a multiple flare-angles smooth-walled horn. Both designs are comprised of 0.5 µm2 hybrid niobium/aluminium-nitride/niobium-nitride tunnel junction, fabricated on top of a niobium titanium nitride ground plane with an Al wiring layer. The entire superconducting circuit is supported with a 40 µm thick quartz substrate. The major difference between the two designs is the method used to cancel out the parasitic junction capacitance for broadband performance. The first design utilises two identical junctions connected in parallel with a short transmission line to convert the capacitance of one junction into the equivalent inductance of the other junction, commonly known as the twin-junction tuning scheme; whilst the second design employs an end-loaded scheme with only one tunnel junction. We found that both methods offer similar radio frequency performances, with close to 2× the double sideband quantum noise temperature, but the twin-junction design is more resilient to fabrication tolerances. However, the end-loaded design offers a much better intermediate frequency (IF) bandwidth performance, made possible by the sub-micron and high current density tunnel junction technology. The improved IF performance is important for many millimetre (mm) and sub-mm observatories, such as future upgrades of Atacama Large Millimetre/sub-mm Array receivers, as well as forthcoming space-borne far-infrared missions. Therefore, we conclude that the single-junction mixer design is the preferred option for THz applications, as long as the fabrication error can be minimised within a certain limit
IF impedance and mixer gain of NbN hot electron bolometers
The intermediate frequency (IF) characteristics, the frequency dependent IF impedance, and the mixer conversion gain of a small area hot electron bolometer (HEB) have been measured and modeled. The device used is a twin slot antenna coupled NbN HEB mixer with a bridge area of 1×0.15 µm^2, and a critical temperature of 8.3 K. In the experiment the local oscillator frequency was 1.300 THz, and the (IF) 0.05–10 GHz. We find that the measured data can be described in a self-consistent manner with a thin film model presented by Nebosis et al. [Proceedings of the Seventh International Symposium on Space Terahertz Technology, Charlottesville, VA, 1996 (unpublished), pp. 601–613], that is based on the two temperature electron-phonon heat balance equations of Perrin-Vanneste [J. Phys. (Paris) 48, 1311 (1987)]. From these results the thermal time constant, governing the gain bandwidth of HEB mixers, is observed to be a function of the electron-phonon scattering time, phonon escape time, and the electron temperature. From the developed theory the maximum predicted gain bandwidth for a NbN HEB is found to be 5.5–6 GHz. In contrast, the gain bandwidth of the device under discussion was measured to be ~2.3 GHz which, consistent with the outlined theory, is attributed to a somewhat low critical temperature and nonoptimal film thickness (6 nm)
- …