2 research outputs found

    Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity

    Full text link
    We study the superconducting phase with two component order parameter scenario, such as, dx2−y2+eiθsαd_{x^2-y^2} + e^{i\theta}s_{\alpha}, where α=xy,x2+y2\alpha = xy, x^2+y^2. We show, that in absence of orthorhombocity, the usual dx2−y2d_{x^2-y^2} does not mix with usual sx2+y2s_{x^2+y^2} symmetry gap in an anisotropic band structure. But the sxys_{xy} symmetry does mix with the usual d-wave for θ=0\theta =0. The d-wave symmetry with higher harmonics present in it also mixes with higher order extended ss wave symmetry. The required pair potential to obtain higher anisotropic dx2−y2d_{x^2-y^2} and extended s-wave symmetries, is derived by considering longer ranged two-body attractive potential in the spirit of tight binding lattice. We demonstrate that the dominant pairing symmetry changes drastically from dd to ss like as the attractive pair potential is obtained from longer ranged interaction. More specifically, a typical length scale of interaction ξ\xi, which could be even/odd multiples of lattice spacing leads to predominant s/ds/d wave symmetry. The role of long range interaction on pairing symmetry has further been emphasized by studying the typical interplay in the temperature dependencies of these higher order dd and ss wave pairing symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR
    corecore