674 research outputs found

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Pure down-conversion photons through sub-coherence length domain engineering

    Full text link
    Photonic quantum technology relies on efficient sources of coherent single photons, the ideal carriers of quantum information. Heralded single photons from parametric down-conversion can approximate on-demand single photons to a desired degree, with high spectral purities achieved through group-velocity matching and tailored crystal nonlinearities. Here we propose crystal nonlinearity engineering techniques with sub-coherence-length domains. We first introduce a combination of two existing methods: a deterministic approach with coherence-length domains and probabilistic domain-width annealing. We then show how the same deterministic domain-flip approach can be implemented with sub-coherence length domains. Both of these complementary techniques create highly pure photons, outperforming previous methods, in particular for short nonlinear crystals matched to femtosecond lasers.Comment: 12 pages, 4 figures. Minor update to Fig.

    A Novel Protocol-Authentication Algorithm Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography

    Full text link
    In this work we review the security vulnerability of Quantum Cryptography with respect to "man-in-the-middle attacks" and the standard authentication methods applied to counteract these attacks. We further propose a modified authentication algorithm which features higher efficiency with respect to consumption of mutual secret bits.Comment: 4 pages, submitted to the International Journal of Quantum Information, Proceedings of the meeting "Foundations of Quantum Information", Camerino, April 200

    Efficient measurement of quantum dynamics via compressive sensing

    Get PDF
    The resources required to characterise the dynamics of engineered quantum systems-such as quantum computers and quantum sensors-grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to dynamical processes that are known to be nearly-sparse in a certain basis and it can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices on an experiment attempting to implement a photonic two-qubit logic-gate. The data base is obtained under various decoherence strengths. We find that our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.Comment: New title and authors. A new experimental section. Significant rewrite of the theor

    Tribological Behavior of Thermal Spray Coatings, Deposited by HVOF and APS Techniques, and Composite Electrodeposits Ni/SiC at Both Room Temperature and 300 °C

    Get PDF
    The Both the thermal spray and the electroplating coatings are widely used because of their high wear resistance combined with good corrosion resistance. In particular the addition of both micro particles or nano‐particles to the electro deposited coatings could lead to an increase of the mechanical properties, caused by the change of the coating microstructure. The thermal spray coatings were deposited following industrial standards procedures, while the Ni/SiC composite coatings were produced at laboratory scale using both micro‐and nano‐sized ceramic particles. All the produced coatings were characterized regarding their microstructure,mechanical properties and the wear resistance. The tribological properties were analyzed using a tribometer under ball on disk configuration at both room temperature and 300oC. The results showed that the cermet thermal spray coatings have a high wear resistance, while the Ni nano‐composite showed good anti wear properties compared to the harder ceramic/cermet coatings deposited by thermal spray technique

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Information complementarity in quantum physics

    Full text link
    We demonstrate that the concept of information offers a more complete description of complementarity than the traditional approach based on observables. We present the first experimental test of information complementarity for two-qubit pure states, achieving close agreement with theory; We also explore the distribution of information in a comprehensive range of mixed states. Our results highlight the strange and subtle properties of even the simplest quantum systems: for example, entanglement can be increased by reducing correlations between two subsystems.Comment: 6 pages, 7 figures (including supplementary material

    Practical Quantum Key Distribution with Polarization-Entangled Photons

    Full text link
    We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure
    corecore