6,745 research outputs found
Off-Shell Scattering Amplitudes for WW Scattering and the Role of the Photon Pole
We derive analytic expressions for high energy off-shell scattering
amplitudes of weak vector bosons. They are obtained from six fermion final
states in processes of the type . As an application we reconsider the
unitarity bounds on the Higgs mass. Particular attention is given to the role
of the photon exchange which has not been considered in earlier investigations;
we find that the photon weakens the bound of the Higgs mass.Comment: 16 pages, 8 figure
Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions
We consider within QCD collinear factorization the inclusive process , where the pair of identified hadrons, , having large
transverse momenta is produced in high-energy proton-proton collisions. In
particular, we concentrate on the kinematics where the two identified hadrons
in the final state are separated by a large interval of rapidity . In
this case the (calculable) hard part of the reaction receives large higher
order corrections . We provide a theoretical input
for the resummation of such contributions with next-to-leading logarithmic
accuracy (NLA) in the BFKL approach. Specifically, we calculate in NLA the
vertex (impact-factor) for the inclusive production of the identified hadron.
This process has much in common with the widely discussed Mueller-Navelet jets
production and can be also used to access the BFKL dynamics at proton
colliders. Another application of the obtained identified-hadron vertex could
be the NLA BFKL description of inclusive forward hadron production in DIS.Comment: 29 pages, 9 figures; corrected few typos and added an acknowledgment;
version to be published on JHEP. arXiv admin note: substantial text overlap
with arXiv:1202.108
Wess-Zumino model with exact supersymmetry on the lattice
A lattice formulation of the four dimensional Wess-Zumino model that uses
Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The
supersymmetry transformation that leaves invariant the action at finite lattice
spacing is determined by performing an iterative procedure in the coupling
constant. The closure of the algebra, generated by this transformation is also
showed.Comment: 13 pages. Few references added. New appendix on Ward identity added.
Version to be published in JHE
The K-theoretic Farrell-Jones Conjecture for hyperbolic groups
We prove the K-theoretic Farrell-Jones Conjecture for hyperbolic groups with
(twisted) coefficients in any associative ring with unit.Comment: 33 pages; final version; to appear in Invent. Mat
Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates
Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins
Heritability of daytime cortisol levels in children
INTRODUCTION Cortisol is a steroid hormone secreted by the outer cortex of the adrenal gland. Its secretion is stimulated by ACTH (adrenocorticotrophic hormone), produced in the pituitary in response to corticotropin-releasing hormone (CRH), a product from neurons in the paraventricular nucleus of the hypothalamus.After its release, the major part of cortisol binds to the plasma proteins corticosteroid binding globulin (CBG, or transcortin) and albumin, which prevents the hormone from penetrating the membranes of their target cells. About 3--5% of the total cortisol is the unbound, biologically active fraction. This active fraction has permissive, suppressive, stimulatory, and preparative action effects in the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology (Sapolsky, Romero, and Munck, 2000). Although cortisol is mainly known for its pivotal role in generating an adequate response to phy
The correlation potential in density functional theory at the GW-level: spherical atoms
As part of a project to obtain better optical response functions for nano
materials and other systems with strong excitonic effects we here calculate the
exchange-correlation (XC) potential of density-functional theory (DFT) at a
level of approximation which corresponds to the dynamically- screened-exchange
or GW approximation. In this process we have designed a new numerical method
based on cubic splines which appears to be superior to other techniques
previously applied to the "inverse engineering problem" of DFT, i.e., the
problem of finding an XC potential from a known particle density. The
potentials we obtain do not suffer from unphysical ripple and have, to within a
reasonable accuracy, the correct asymptotic tails outside localized systems.
The XC potential is an important ingredient in finding the particle-conserving
excitation energies in atoms and molecules and our potentials perform better in
this regard as compared to the LDA potential, potentials from GGA:s, and a DFT
potential based on MP2 theory.Comment: 13 pages, 9 figure
Velocity-selective direct frequency-comb spectroscopy of atomic vapors
We present an experimental and theoretical investigation of two-photon direct
frequency-comb spectroscopy performed through velocity-selective excitation. In
particular, we explore the effect of repetition rate on the
two-photon transitions
excited in a rubidium atomic vapor cell. The transitions occur via step-wise
excitation through the states by use of the direct
output of an optical frequency comb. Experiments were performed with two
different frequency combs, one with a repetition rate of MHz and
one with a repetition rate of MHz. The experimental spectra are
compared to each other and to a theoretical model.Comment: 10 pages, 7 figure
Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions
Diffractive excitation is usually described by the Good--Walker formalism for
low masses, and by the triple-Regge formalism for high masses. In the
Good--Walker formalism the cross section is determined by the fluctuations in
the interaction. In this paper we show that by taking the fluctuations in the
BFKL ladder into account, it is possible to describe both low and high mass
excitation by the Good--Walker mechanism. In high energy collisions the
fluctuations are strongly suppressed by saturation, which implies that pomeron
exchange does not factorise between DIS and collisions. The Dipole Cascade
Model reproduces the expected triple-Regge form for the bare pomeron, and the
triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure
- …