300 research outputs found
Development And Reliability Analysis Of A Split-Administration Test Of The Math Epistemic Games Survey
The increasing and diversifying student enrollments in introductory physics courses make reliable, valid, and usable instruments for measuring student skills and gains ever more important. In introductory physics, in addition to teaching facts about mechanics, we also seek to teach our students the skills of “thinking like a physicist,” or expertise in and intuition for physical problem solving. How and when these expert, intuitive problem-solving skills emerge during a STEM education, or what the most effective teaching methods might be, are not certain. A facile survey to measure students’ “physics-thinking” skills in a pretest and post-test format is therefore desirable to measure and evaluate different pedagogical approaches. Prior investigators codified these skills as “epistemic games” (e.g., order-of-magnitude estimation, evaluating extreme cases) and developed and validated the math epistemic games survey (MEGS) to measure students’ ability to employ these techniques. The original survey instrument is reliable and valid but has drawbacks in its length and in students’ ability to recall questions between administrations. We employed factor analysis to split the MEGS into two mutually exclusive subtests and measured them to be equivalently reliable and valid as the full-length MEGS as originally formulated. The “split MEGS” is well suited for use as a pretest and post-test instrument to measure gains in expertise in problem solving in introductory physics courses
Tuning the Structure of Nylon 6,6 Electrospun Bundles to Mimic the Mechanical Performance of Tendon Fascicles
Tendon and ligament injuries are triggered by mechanical loading, but the specific mechanisms are not yet clearly identified. It is well established however, that the inflection and transition points in tendon stress-strain curves represent thresholds that may signal the onset of irreversible fibrillar sliding. This phenomenon often results in a progressive macroscopic failure of these tissues. With the aim to simulate and replace tendons, electrospinning has been demonstrated to be a suitable technology to produce nanofibers similar to the collagen fibrils in a mat form. These nanofibrous mats can be easily assembled in higher hierarchical levels to reproduce the whole tissue structure. Despite the fact that several groups have developed electrospun tendon-inspired structures, an investigation of the inflection and transition point mechanics is missing. Comparing their behavior with that of the natural counterpart is important to adequately replicate their behavior at physiological strain levels. To fill this gap, in this work fascicle-inspired electrospun nylon 6,6 bundles were produced with different collector peripheral speeds (i.e., 19.7 m s–1; 13.7 m s–1; 7.9 m s–1), obtaining different patterns of nanofibers alignment. The scanning electron microcopy revealed a fibril-inspired structure of the nanofibers with an orientation at the higher speed similar to those in tendons and ligaments (T/L). A tensile mechanical characterization was carried out showing an elastic-brittle biomimetic behavior for the higher speed bundles with a progressively more ductile behavior at slower speeds. Moreover, for each sample category the transition and the inflection points were defined to study how these points can shift with the nanofiber arrangement and to compare their values with those of tendons. The results of this study will be of extreme interest for the material scientists working in the field, to model and improve the design of their electrospun structures and scaffolds and enable building a new generation of artificial tendons and ligaments
Comment on “minimal and maximal models to quantitate glucose metabolism : tools to measure, to simulate and to run in silico clinical trials"
Comment on “Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials
Peptide Fingerprinting of Alzheimer's Disease in Cerebrospinal Fluid: Identification and Prospective Evaluation of New Synaptic Biomarkers
<p><b>Background:</b> Today, dementias are diagnosed late in the course of disease. Future treatments have to start earlier in the disease process to avoid disability requiring new diagnostic tools. The objective of this study is to develop a new method for the differential diagnosis and identification of new biomarkers of Alzheimer's disease (AD) using capillary-electrophoresis coupled to mass-spectrometry (CE-MS) and to assess the potential of early diagnosis of AD.</p>
<p><b>Methods and Findings:</b> Cerebrospinal fluid (CSF) of 159 out-patients of a memory-clinic at a University Hospital suffering from neurodegenerative disorders and 17 cognitively-healthy controls was used to create differential peptide pattern for dementias and prospective blinded-comparison of sensitivity and specificity for AD diagnosis against the Criterion standard in a naturalistic prospective sample of patients. Sensitivity and specificity of the new method compared to standard diagnostic procedures and identification of new putative biomarkers for AD was the main outcome measure. CE-MS was used to reliably detect 1104 low-molecular-weight peptides in CSF. Training-sets of patients with clinically secured sporadic Alzheimer's disease, frontotemporal dementia, and cognitively healthy controls allowed establishing discriminative biomarker pattern for diagnosis of AD. This pattern was already detectable in patients with mild cognitive impairment (MCI). The AD-pattern was tested in a prospective sample of patients (n = 100) and AD was diagnosed with a sensitivity of 87% and a specificity of 83%. Using CSF measurements of beta-amyloid1-42, total-tau, and phospho(181)-tau, AD-diagnosis had a sensitivity of 88% and a specificity of 67% in the same sample. Sequence analysis of the discriminating biomarkers identified fragments of synaptic proteins like proSAAS, apolipoprotein J, neurosecretory protein VGF, phospholemman, and chromogranin A.</p>
<p><b>Conclusions:</b> The method may allow early differential diagnosis of various dementias using specific peptide fingerprints and identification of incipient AD in patients suffering from MCI. Identified biomarkers facilitate face validity for the use in AD diagnosis.</p>
Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA
The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother–child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30–35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10−8 (interquartile range from 4.2 × 10−9 to 4.1 × 10−8) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome
Daydreams incorporate recent waking life concerns but do not show delayed (‘dream-lag’) incorporations
This study investigates the time course of incorporation of waking life experiences into daydreams. Thirty-one participants kept a diary for 10 days, reporting major daily activities (MDAs), personally significant events (PSEs) and major concerns (MCs). They were then cued for daydream, Rapid Eye Movement (REM) and N2 dream reports in the sleep laboratory. There was a higher incorporation into daydreams of MCs from the previous two days (day-residue effect), but no day-residue effect for MDAs or PSEs, supporting a function for daydreams of processing current concerns. A day-residue effect for PSEs and the delayed incorporation of PSEs from 5-7 days before the dream (the dream-lag effect) have previously been found for REM dreams. Delayed incorporation was not found in this study for daydreams. Daydreams might thus differ in function from REM sleep dreams. However, the REM dream-lag effect was not replicated here, possibly due to design differences from previous studies
Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall
High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing reactions during sleep. Participants (18 HR, 18 LR) were presented with sounds during a whole night of sleep in the lab and polysomnographic data were recorded. Sleep microstructure (arousals, rapid eye movements (REMs), muscle twitches (MTs), spindles, KCs) was assessed using visual, semi-automatic and automatic validated methods. AEPs to arousing (awakenings or arousals) and non-arousing stimuli were subsequently computed. No between-group difference in the microstructure of sleep was found. In N2 sleep, auditory arousing stimuli elicited a larger parieto-occipital positivity and an increased late frontal negativity as compared to non-arousing stimuli. As compared to LR, HR showed more arousing stimuli and more long awakenings, regardless of the sleep stage but did not show more numerous or longer arousals. These results suggest that the amplitude of the brain response to stimuli during sleep determine subsequent awakening and that awakening duration (and not arousal) is the critical parameter for dream recall. Notably, our results led us to propose that the minimum necessary duration of an awakening during sleep for a successful encoding of dreams into long-term memory is approximately 2 min
Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.
Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification
- …