725 research outputs found
An adaptive controller for enhancing operator performance during teleoperation
An adaptive controller is developed for adjusting robot arm parameters while manipulating payloads of unknown mass and inertia. The controller is tested experimentally in a master/slave configuration where the adaptive slave arm is commanded via human operator inputs from a master. Kinematically similar six-joint master and slave arms are used with the last three joints locked for simplification. After a brief initial adaptation period for the unloaded arm, the slave arm retrieves different size payloads and maneuvers them about the workspace. Comparisons are then drawn with similar tasks where the adaptation is turned off. Several simplifications of the controller dynamics are also addressed and experimentally verified
Recommended from our members
The Differences in Antibiotic Decision-making Between Acute Surgical and Acute Medical Teams: An Ethnographic Study of Culture and Team Dynamics
Background
Cultural and social determinants influence antibiotic decision-making in hospitals. We investigated and compared cultural determinants of antibiotic decision-making in acute medical and surgical specialties.
Methods
An ethnographic observational study of antibiotic decision-making in acute medical and surgical teams at a London teaching hospital was conducted (August 2015–May 2017). Data collection included 500 hours of direct observations, and face-to-face interviews with 23 key informants. A grounded theory approach, aided by Nvivo 11 software, analyzed the emerging themes. An iterative and recursive process of analysis ensured saturation of the themes. The multiple modes of enquiry enabled cross-validation and triangulation of the findings.
Results
In medicine, accepted norms of the decision-making process are characterized as collectivist (input from pharmacists, infectious disease, and medical microbiology teams), rationalized, and policy-informed, with emphasis on de-escalation of therapy. The gaps in antibiotic decision-making in acute medicine occur chiefly in the transition between the emergency department and inpatient teams, where ownership of the antibiotic prescription is lost. In surgery, team priorities are split between 3 settings: operating room, outpatient clinic, and ward. Senior surgeons are often absent from the ward, leaving junior staff to make complex medical decisions. This results in defensive antibiotic decision-making, leading to prolonged and inappropriate antibiotic use.
Conclusions
In medicine, the legacy of infection diagnosis made in the emergency department determines antibiotic decision-making. In surgery, antibiotic decision-making is perceived as a nonsurgical intervention that can be delegated to junior staff or other specialties. Different, bespoke approaches to optimize antibiotic prescribing are therefore needed to address these specific challenges
Transcriptome-wide analysis of the response of the thecosome pteropod Clio pyramidata to short-term CO2 exposure
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 16 (2015): 1-9, doi:10.1016/j.cbd.2015.06.002.Thecosome pteropods, a group of calcifying holoplanktonic molluscs, have recently become a research focus due to their potential sensitivity to increased levels of anthropogenic dissolved CO2 in seawater and the accompanying ocean acidification. Some populations, however, already experience high CO2 in their natural distribution during diel vertical migrations. To achieve a better understanding of the mechanisms of pteropod calcification and physiological response to this sort of short duration CO2 exposure, we characterized the gene complement of Clio pyramidata, a cosmopolitan diel migratory thecosome, and investigated its transcriptomic response to experimentally manipulated CO2 conditions. Individuals were sampled from the Northwest Atlantic in the fall of 2011 and exposed to ambient conditions (~380 ppm) and elevated CO2 (~800 ppm, similar to levels experienced during a diel vertical migration) for ~10 hrs. Following this exposure the respiration rate of the individuals was measured. We then performed RNA-seq analysis, assembled the C. pyramidata transcriptome de novo, annotated the genes, and assessed the differential gene expression patterns in response to exposure to elevated CO2. Within the transcriptome, we identified homologs of genes with known roles in biomineralization in other molluscs, including perlucin, calmodulin, dermatopontin, calponin,
and chitin synthases. Respiration rate was not affected by short-term exposure to CO2. Gene expression varied greatly among individuals, and comparison between treatments indicated that C. pyramidata down-regulated a small number of genes associated with aerobic metabolism and up-regulated genes that may be associated with biomineralization, particularly collagens and C- type lectins. These results provide initial insight into the effects of short term CO2 exposure on these important planktonic open-ocean calcifiers, pairing respiration rate and the gene expression level of response, and reveal candidate genes for future ecophysiological, biomaterial and phylogenetic studies.The Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575, provided computing resources for the differential expression analysis. This material is based upon work supported by the National Science Foundation’s Ocean Acidification Program under grant number OCE-1041068 (to Lawson, Wang, Lavery, and Wiebe), the Woods Hole Oceanographic Institution’s Access to the Sea program (to Tarrant, Maas and Lawson) and the WHOI postdoctoral scholarship program (to Maas)
Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biology Open (2016): 1-4, doi:10.1242/bio.013474.In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species.Funding was provided by the US–Israel Binational Science Foundation [Grant 201187]. I.T.J. was supported by the WHOI Summer Student Fellow program, which is partially funded by the National Science Foundation Research Experience for Undergraduates program. A.M.R. was supported by National Institutes of Heath [R15GM114740]
Recommended from our members
Opportunities for system level improvement in antibiotic use across the surgical pathway
Optimizing antibiotic prescribing across the surgical pathway (before, during, and after surgery) is a key aspect of tackling important drivers of antimicrobial resistance and simultaneously decreasing the burden of infection at the global level. In the UK alone, 10 million patients undergo surgery every year, which is equivalent to 60% of the annual hospital admissions having a surgical intervention. The overwhelming majority of surgical procedures require effectively limited delivery of antibiotic prophylaxis to prevent infections. Evidence from around the world indicates that antibiotics for surgical prophylaxis are administered ineffectively, or are extended for an inappropriate duration of time postoperatively. Ineffective antibiotic prophylaxis can contribute to the development of surgical site infections (SSIs), which represent a significant global burden of disease. The World Health Organization estimates SSI rates of up to 50% in postoperative surgical patients (depending on the type of surgery), with a particular problem in low- and middle-income countries, where SSIs are the most frequently reported healthcare-associated infections. Across European hospitals, SSIs alone comprise 19.6% of all healthcare-acquired infections. Much of the scientific research in infection management in surgery is related to infection prevention and control in the operating room, surgical prophylaxis, and the management of SSIs, with many studies focusing on infection within the 30-day postoperative period. However it is important to note that SSIs represent only one of the many types of infection that can occur postoperatively. This article provides an overview of the surgical pathway and considers infection management and antibiotic prescribing at each step of the pathway. The aim was to identify the implications for research and opportunities for system improvement
Assembly of a reference transcriptome for the gymnosome pteropod Clione limacina and profiling responses to short-term CO2 exposure
© The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Genomics 34 (2017): 39-45, doi:10.1016/j.margen.2017.03.003.The gymnosome (unshelled) pteropod Clione limacina is a pelagic predatory mollusc found in
polar and sub-polar regions. It has been studied for its distinctive swimming behavior and as an
obligate predator on the closely related thecosome (shelled) pteropods. As concern about ocean
acidification increases, it becomes useful to compare the physiological responses of closely-related calcifying and non-calcifying species to acidification. The goals of this study were thus to
generate a reference transcriptome for Clione limacina, to expose individuals to CO2 for a period
of 3 days, and to explore differential patterns of gene expression. Our Trinity assembly contained
300,994 transcripts of which ~26% could be annotated. In total, only 41 transcripts were
differentially expressed following the CO2 treatment, consistent with a limited physiological
response of this species to short-term CO2 exposure. The differentially expressed genes
identified in our study were largely distinct from those identified in previous studies of
thecosome pteropods, although some similar transcripts were identified, suggesting that
comparison of these transcriptomes and responses may provide insight into differences in OA
responses among phylogenetically and functionally distinct molluscan lineages.A. Thabet is grateful for a fellowship from the Egyptian Culture and Education Bureau and for
mentoring from Drs. M.M. Sarhan and M.M. Fouda. Funding for this research was provided by a
National Science Foundation grant to Lawson, Maas, and Tarrant (OCE-1316040)
Environmental entrainment demonstrates natural circadian rhythmicity in the cnidarian Nematostella vectensis
Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(21), (2019): jeb.205393, doi:10.1242/jeb.205393.Considerable advances in chronobiology have been made through controlled laboratory studies, but distinct temporal rhythms can emerge under natural environmental conditions. Lab-reared Nematostella vectensis sea anemones exhibit circadian behavioral and physiological rhythms. Given that these anemones inhabit shallow estuarine environments subject to tidal inputs, it was unclear whether circadian rhythmicity would persist following entrainment in natural conditions, or whether circatidal periodicity would predominate. Nematostella were conditioned within a marsh environment, where they experienced strong daily temperature cycles as well as brief tidal flooding around the full and new moons. Upon retrieval, anemones exhibited strong circadian (∼24 h) activity rhythms under a light–dark cycle or continuous darkness, but reduced circadian rhythmicity under continuous light. However, some individuals in each light condition showed circadian rhythmicity, and a few individuals showed circatidal rhythmicity. Consistent with the behavioral studies, a large number of transcripts (1640) exhibited diurnal rhythmicity compared with very few (64) with semidiurnal rhythmicity. Diurnal transcripts included core circadian regulators, and 101 of 434 (23%) genes that were previously found to be upregulated by exposure to ultraviolet radiation. Together, these behavioral and transcriptional studies show that circadian rhythmicity predominates and suggest that solar radiation drives physiological cycles in this sediment-dwelling subtidal animal.A.M.T., R.R.H. and O.L. were supported by the Gordon and Betty Moore Foundation (grant number 4598 to A.M.T. and O.L.). H.E.R. was funded by a Martin Family Fellowship for Sustainability at Massachusetts Institute of Technology and an American dissertation grant from the American Association of University Women.2020-10-1
Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa
Author Posting. © The Company of Biologists, 2018. This article is posted here by permission of The Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 221 (2018): jeb164400, doi:10.1242/jeb.164400.Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.Funding for this research was provided by a National Science Foundation grant to
G.L.L., A.E.M. and A.M.T. (OCE-1316040). Additional support for field sampling was
provided by theWoods Hole Oceanographic Institution, Coastal Ocean Institute and
the Pickman Foundation.2019-02-1
Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 162 (2015): 2235-2249, doi:10.1007/s00227-015-2754-1.Thecosome pteropods are pelagic molluscs with aragonitic shells. They are considered to be especially vulnerable among plankton to ocean acidification (OA), but to recognize changes due to anthropogenic forcing a baseline understanding of their life history is needed. In the present study, adult Limacina retroversa were collected on five cruises from multiple sites in the Gulf of Maine (between 42° 22.1’–42° 0.0’ N and 69° 42.6’–70° 15.4’ W; water depths of ca. 45–260 m) from October 2013−November 2014. They were maintained in the laboratory under continuous light at 8° C. There was evidence of year-round reproduction and an individual life span in the laboratory of 6 months. Eggs laid in captivity were observed throughout development. Hatching occurred after 3 days, the veliger stage was reached after 6−7 days, and metamorphosis to the juvenile stage was after ~ 1 month. Reproductive individuals were first observed after 3 months. Calcein staining of embryos revealed calcium storage beginning in the late gastrula stage. Staining was observed in the shell gland, shell field, mantle, and shell margin in later stages. Exposure of two batches of larvae at the gastrula stage to elevated CO2 levels (800 and 1200 ppm) resulted in significantly increased mortality in comparison with individuals raised under ambient (~400 ppm) conditions and a developmental delay in the 1200 ppm treatment compared with the ambient and 800 ppm treatments.A. Thabet is grateful for a fellowship from the Egyptian Culture and Education Bureau and for mentoring from Drs. S.A. Saber, M.M. Sarhan and M.M. Fouda. Funding for this research was provided by a National Science Foundation grant to Lawson, Maas, and Tarrant (OCE-1316040). Additional support for field sampling was provided by the WHOI Coastal Ocean Institute and Pickman Foundation to Wang, Maas, and Lawson.2016-10-2
Diel metabolic patterns in a migratory oceanic copepod
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A., & Maas, A. E. Diel metabolic patterns in a migratory oceanic copepod. Journal of Experimental Marine Biology and Ecology, 545, (2021): 151643, https://doi.org/10.1016/j.jembe.2021.151643.Diel vertical migration of zooplankton profoundly impacts the transport of nutrients and carbon through the water column. Despite the acknowledged importance of this active flux to ocean biogeochemistry, these contributions remain poorly constrained, in part because daily variations in metabolic rates are not considered or are modeled as simple functions of temperature. To address this uncertainty, we sampled the subtropical copepod Pleuromamma xiphias at 4- to 7-h intervals throughout the daily migration and measured rates of oxygen consumption, ammonium excretion, fecal pellet production and metabolic enzyme activity. No significant patterns were detected in rates of oxygen consumption or ammonium excretion for freshly caught animals over the diel cycle. Fecal pellet production was highest during mid-night, consistent with several hours of feeding near the surface. Surface feeding resulted in fecal pellet production at depth in the morning, providing direct evidence that active flux of particulate organic carbon occurs in this region. Electron transport system activity was highest during the afternoon, contrary to our prediction of reduced daytime metabolism. Activity of both glutamate dehydrogenase and citrate synthase increased during early night, reflecting higher capacity for excretion and aerobic respiration, respectively. Overall, these results show that activities of metabolic enzymes vary during diel vertical migration. The surprising observation of elevated afternoon enzyme activity coupled with daytime fecal pellet and ammonium production suggests that additional characterization of the daytime activity of migratory zooplankton is warranted.This work was supported by the National Science Foundation [Grants OCE-1829318 to AEMand LBB, and OCE-1829378 to AMT]. Support for NM-B was provided by the Woods Hole Oceanographic Institution's Summer Student Fellows Program
- …