319 research outputs found

    Abrikosov vortex escape from a columnar defect as a topological electronic transition in vortex core

    Full text link
    We study microscopic scenario of vortex escape from a columnar defect under the influence of a transport current. For defect radii smaller than the superconducting coherence length the depinning process is shown to be a consequence of two subsequent topological electronic transitions in a trapped vortex core. The first transition at a critical current jLj_L is associated with the opening of Fermi surface segments corresponding to the creation of a vortex--antivortex pair bound to the defect. The second transition at a certain current jd>jLj_d > j_L is caused by merging of different Fermi surface segments, which accompanies the formation of a freely moving vortex.Comment: 5 pages, 4 figure

    Local density of states around single vortices and vortex pairs: effect of boundaries and hybridization of vortex core states

    Full text link
    The profiles of local density of states (LDOS) around different vortex configurations in mesoscopic superconductors are studied taking account of the interference of quasiparticle waves experiencing Andreev reflection within the vortex cores and normal reflection at the boundaries or defects. For subgap energy levels these interference effects reveal themselves in a nontrivial dependence of the positions of the LDOS peaks on the intervortex distance and sample size: the peak positions generally do not coincide with the superconducting phase singularity points. The LDOS profiles are calculated for three generic examples: (i) vortex-vortex pair; (ii) vortex positioned near a flat boundary; (iii) vortex positioned in the center of a superconducting disk. The resulting evolution of the Andreev interference patterns could be observable by scanning tunneling spectroscopy techniques.Comment: 9 pages, 6 figure

    Multiple Vortex Cores in 2D Electronic Systems with Proximity Induced Superconductivity

    Full text link
    The structure of a proximity induced vortex core in a two-dimensional (2D) metallic layer covering a superconducting half-space is calculated. We predict formation of a multiple vortex core characterized by two-scale behavior of the local density of states (LDOS). For coherent tunnelling between the 2D layer and the bulk superconductor, the spectrum has two subgap branches while for incoherent tunnelling only one of them remains. The resulting splitting of the zero-bias anomaly and the multiple peak structure in the LDOS should be visible in the tunnelling spectroscopy experiments.Comment: 13 pages, 4 figure

    Theory of vortex lattice effects on STM spectra in d-wave superconductors

    Full text link
    Theory of scanning tunneling spectroscopy of low energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures in STM spectra, which correspond to van Hove singularities are analysed. Theoretical calculations carried out for finite temperatures and scattering rates are compared with recent experimental data for high temperature cuprates.Comment: 4 pages, 3 eps figures, M2S-HTSC-VI conference paper, using Elsevier style espcrc2.st

    A new extended matrix KP hierarchy and its solutions

    Full text link
    With the square eigenfunctions symmetry constraint, we introduce a new extended matrix KP hierarchy and its Lax representation from the matrix KP hierarchy by adding a new Ï„B\tau_B flow. The extended KP hierarchy contains two time series tA{t_A} and Ï„B{\tau_B} and eigenfunctions and adjoint eigenfunctions as components. The extended matrix KP hierarchy and its tAt_A-reduction and Ï„B\tau_B reduction include two types of matrix KP hierarchy with self-consistent sources and two types of (1+1)-dimensional reduced matrix KP hierarchy with self-consistent sources. In particular, the first type and second type of the 2+1 AKNS equation and the Davey-Stewartson equation with self-consistent sources are deduced from the extended matrix KP hierarchy. The generalized dressing approach for solving the extended matrix KP hierarchy is proposed and some solutions are presented. The soliton solutions of two types of 2+1-dimensional AKNS equation with self-consistent sources and two types of Davey-Stewartson equation with self-consistent sources are studied.Comment: 17 page

    Physical Limits of the ballistic and non-ballistic Spin-Field-Effect Transistor: Spin Dynamics in Remote Doped Structures

    Get PDF
    We investigate the spin dynamics and relaxation in remotely-doped two dimensional electron systems where the dopants lead to random fluctuations of the Rashba spin-orbit coupling. Due to the resulting random spin precession, the spin relaxation time is limited by the strength and spatial scale of the random contribution to the spin-orbit coupling. We concentrate on the role of the randomness for two systems where the direction of the spin-orbit field does not depend on the electron momentum: the spin field-effect transistor with balanced Rashba and Dresselhaus couplings and the (011) quantum well. Both of these systems are considered as promising for the spintronics applications because of the suppression of the Dyakonov-Perel' mechanism there makes the realization of a spin field effect transistor in the diffusive regime possible. We demonstrate that the spin relaxation through the randomness of spin-orbit coupling imposes important physical limitations on the operational properties of these devices.Comment: 10 pages, 4 figure

    Non-exponential spin relaxation in magnetic field in quantum wells with random spin-orbit coupling

    Full text link
    We investigate the spin dynamics of electrons in quantum wells where the Rashba type of spin-orbit coupling is present in the form of random nanosize domains. We study the effect of magnetic field on the spin relaxation in these systems and show that the spatial randomness of spin-orbit coupling limits the minimum relaxation rate and leads to a Gaussian time-decay of spin polarization due to memory effects. In this case the relaxation becomes faster with increase of the magnetic field in contrast to the well known magnetic field suppression of spin relaxation.Comment: published version, minor change

    Binding of molecules to DNA and other semiflexible polymers

    Full text link
    A theory is presented for the binding of small molecules such as surfactants to semiflexible polymers. The persistence length is assumed to be large compared to the monomer size but much smaller than the total chain length. Such polymers (e.g. DNA) represent an intermediate case between flexible polymers and stiff, rod-like ones, whose association with small molecules was previously studied. The chains are not flexible enough to actively participate in the self-assembly, yet their fluctuations induce long-range attractive interactions between bound molecules. In cases where the binding significantly affects the local chain stiffness, those interactions lead to a very sharp, cooperative association. This scenario is of relevance to the association of DNA with surfactants and compact proteins such as RecA. External tension exerted on the chain is found to significantly modify the binding by suppressing the fluctuation-induced interaction.Comment: 15 pages, 7 figures, RevTex, the published versio

    Generation of singlet oxygen by indotricarbocyanine dyes in low-polarity media

    Get PDF
    We present the results of a study of the spectral luminescence properties of three groups of indotricarbocyanine dyes, each of which is formed from compounds with the same cation and different anions. In high-polarity solvents, in the absorption and emission spectra of the dyes we see one type of center; in low-polarity solvents, due to the presence of different ionic forms of the dyes (free ions, contact ion pairs), we observe either one type or two types of centers. By analysis of the luminescence of molecular oxygen in the 1.27 µm spectral region, we determined the efficiency of photosensitization of 1O2 formation by dyes in deuterated solvents. We have shown that in low-polarity solvents, the yield for singlet oxygen generation is higher for indotricarbocyanine dyes which are found in the contact ion pair state and which also contain a heavy atom (I) in the anion. We have observed that an increase in the fraction of contact ion pairs in solution as the dye concentration increases or when an additional salt is introduced leads to an increase in the quantum yield for generation of singlet oxygen. In polar deuterated acetonitrile, the counterion has no effect on the efficiency of photosensitization of oxygen by the dyes

    Spectrum of bound fermion states on vortices in 3^3He-B

    Full text link
    We study subgap spectra of fermions localized within vortex cores in 3^3He-B. We develop an analytical treatment of the low-energy states and consider the characteristic properties of fermion spectra for different types of vortices. Due to the removed spin degeneracy the spectra of all singly quantized vortices consist of two different anomalous branches crossing the Fermi level. For singular oo and uu vortices the anomalous branches are similar to the standard Caroli-de Gennes -Matricon ones and intersect the Fermi level at zero angular momentum yet with different slopes corresponding to different spin states. On the contrary the spectral branches of nonsingular vortices intersect the Fermi level at finite angular momenta which leads to the appearance of a large number of zero modes, i.e. energy states at the Fermi level. Considering the vv, ww and uvwuvw vortices with superfluid cores we show that the number of zero modes is proportional to the size of the vortex core.Comment: 6 pages, 1 figur
    • …
    corecore