3,095 research outputs found

    Improvement of stabilizer based entanglement distillation protocols by encoding operators

    Full text link
    This paper presents a method for enumerating all encoding operators in the Clifford group for a given stabilizer. Furthermore, we classify encoding operators into the equivalence classes such that EDPs (Entanglement Distillation Protocol) constructed from encoding operators in the same equivalence class have the same performance. By this classification, for a given parameter, the number of candidates for good EDPs is significantly reduced. As a result, we find the best EDP among EDPs constructed from [[4,2]] stabilizer codes. This EDP has a better performance than previously known EDPs over wide range of fidelity.Comment: 22 pages, 2 figures, In version 2, we enumerate all encoding operators in the Clifford group, and fix the wrong classification of encoding operators in version

    A Note on Linear Optics Gates by Post-Selection

    Get PDF
    Recently it was realized that linear optics and photo-detectors with feedback can be used for theoretically efficient quantum information processing. The first of three steps toward efficient linear optics quantum computation (eLOQC) was to design a simple non-deterministic gate, which upon post-selection based on a measurement result implements a non-linear phase shift on one mode. Here a computational strategy is given for finding non-deterministic gates for bosonic qubits with helper photons. A more efficient conditional sign flip gate is obtained.Comment: 14 pages. Minor changes for clarit

    Entanglement Purification of Any Stabilizer State

    Get PDF
    We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchange their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steane's seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review

    Encoding a qubit in an oscillator

    Get PDF
    Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the noncommutative geometry of phase space to protect against errors that shift the values of the canonical variables q and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states. Finite-dimensional versions of these codes can be constructed that protect encoded quantum information against shifts in the amplitude or phase of a d-state system. Continuous-variable codes can be invoked to establish lower bounds on the quantum capacity of Gaussian quantum channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested by Phys. Rev. A, minor correction

    A simple proof of the unconditional security of quantum key distribution

    Get PDF
    Quantum key distribution is the most well-known application of quantum cryptography. Previous proposed proofs of security of quantum key distribution contain various technical subtleties. Here, a conceptually simpler proof of security of quantum key distribution is presented. The new insight is the invariance of the error rate of a teleportation channel: We show that the error rate of a teleportation channel is independent of the signals being transmitted. This is because the non-trivial error patterns are permuted under teleportation. This new insight is combined with the recently proposed quantum to classical reduction theorem. Our result shows that assuming that Alice and Bob have fault-tolerant quantum computers, quantum key distribution can be made unconditionally secure over arbitrarily long distances even against the most general type of eavesdropping attacks and in the presence of all types of noises.Comment: 13 pages, extended abstract. Comments will be appreciate

    Efficient classical simulation of slightly entangled quantum computations

    Get PDF
    We present a scheme to efficiently simulate, with a classical computer, the dynamics of multipartite quantum systems on which the amount of entanglement (or of correlations in the case of mixed-state dynamics) is conveniently restricted. The evolution of a pure state of n qubits can be simulated by using computational resources that grow linearly in n and exponentially in the entanglement. We show that a pure-state quantum computation can only yield an exponential speed-up with respect to classical computations if the entanglement increases with the size n of the computation, and gives a lower bound on the required growth.Comment: 4 pages. Major changes. Significantly improved simulation schem

    Topological Protection and Quantum Noiseless Subsystems

    Full text link
    Encoding and manipulation of quantum information by means of topological degrees of freedom provides a promising way to achieve natural fault-tolerance that is built-in at the physical level. We show that this topological approach to quantum information processing is a particular instance of the notion of computation in a noiseless quantum subsystem. The latter then provide the most general conceptual framework for stabilizing quantum information and for preserving quantum coherence in topological and geometric systems.Comment: 4 Pages LaTeX. Published versio

    Overhead and noise threshold of fault-tolerant quantum error correction

    Full text link
    Fault tolerant quantum error correction (QEC) networks are studied by a combination of numerical and approximate analytical treatments. The probability of failure of the recovery operation is calculated for a variety of CSS codes, including large block codes and concatenated codes. Recent insights into the syndrome extraction process, which render the whole process more efficient and more noise-tolerant, are incorporated. The average number of recoveries which can be completed without failure is thus estimated as a function of various parameters. The main parameters are the gate (gamma) and memory (epsilon) failure rates, the physical scale-up of the computer size, and the time t_m required for measurements and classical processing. The achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well as other information. It is found that concatenated codes based on the [[23,1,7]] Golay code give higher thresholds than those based on the [[7,1,3]] Hamming code under most conditions. The threshold gate noise gamma_0 is a function of epsilon/gamma and t_m; example values are {epsilon/gamma, t_m, gamma_0} = {1, 1, 0.001}, {0.01, 1, 0.003}, {1, 100, 0.0001}, {0.01, 100, 0.002}, assuming zero cost for information transport. This represents an order of magnitude increase in tolerated memory noise, compared with previous calculations, which is made possible by recent insights into the fault-tolerant QEC process.Comment: 21 pages, 12 figures, minor mistakes corrected and layout improved, ref added; v4: clarification of assumption re logic gate

    Methodology for quantum logic gate constructions

    Full text link
    We present a general method to construct fault-tolerant quantum logic gates with a simple primitive, which is an analog of quantum teleportation. The technique extends previous results based on traditional quantum teleportation (Gottesman and Chuang, Nature {\bf 402}, 390, 1999) and leads to straightforward and systematic construction of many fault-tolerant encoded operations, including the π/8\pi/8 and Toffoli gates. The technique can also be applied to the construction of remote quantum operations that cannot be directly performed.Comment: 17 pages, mypsfig2, revtex. Revised with a different title, a new appendix for clarifying fault-tolerant preparation of quantum states, and various minor change

    Local Fault-tolerant Quantum Computation

    Full text link
    We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which estimates the scale-up in the size of the circuit due to encoding. We carry out a detailed semi-numerical threshold analysis for concatenated coding using the 7-qubit CSS code in the local and `nonlocal' setting. First, we find that the threshold in the local model for the [[7,1,3]] code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.Comment: REVTeX, 44 pages, 19 figures, to appear in Physical Review
    • …
    corecore