2,211 research outputs found

    A quantum group version of quantum gauge theories in two dimensions

    Full text link
    For the special case of the quantum group SLq(2,C) (q=expâĄÏ€i/r, r≄3)SL_q (2,{\bf C})\ (q= \exp \pi i/r,\ r\ge 3) we present an alternative approach to quantum gauge theories in two dimensions. We exhibit the similarities to Witten's combinatorial approach which is based on ideas of Migdal. The main ingredient is the Turaev-Viro combinatorial construction of topological invariants of closed, compact 3-manifolds and its extension to arbitrary compact 3-manifolds as given by the authors in collaboration with W. Mueller.Comment: 6 pages (plain TeX

    Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.This work was supported by the Portuguese Foundation for Science and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to S.C. Guimaraes) and CRUP/Treaty of Windsor (ACÇÕES INTEGRAD AS 2009, B-33/09 to G. Steinberg and M. Schuster). G. Steinberg acknowledges support from the Biotechnology and Biological Sciences Research Counc

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Grassmann-Gaussian integrals and generalized star products

    Full text link
    In quantum scattering on networks there is a non-linear composition rule for on-shell scattering matrices which serves as a replacement for the multiplicative rule of transfer matrices valid in other physical contexts. In this article, we show how this composition rule is obtained using Berezin integration theory with Grassmann variables.Comment: 14 pages, 2 figures. In memory of Al.B. Zamolodichiko

    Positron and positronium affinities in the work-formalism Hartree-Fock approximation

    Full text link
    Positron binding to anions is investigated within the work formalism proposed by Harbola and Sahni for the halide anions and the systems Li^- through O^- excluding Be^- and N^-. The toal ground-state energies of the anion-positron bound systems are empirically found to be an upper bound to the Hartree-Fock energies. The computed expectation values as well as positron and positronium affinities are in good agreement with their restricted Hartree-Fock counterparts. Binding of a positron to neutral species is also investigated using an iterative method.Comment: 12 pages, to appear in Physical Review

    Multipositronic systems

    Get PDF
    The stability of Coulombic systems containing positrons are investigated by the stochastic variational method. The existence of several new exotic atoms are predicted, including HPse+, LiPs2e+, or (H-,Ps2). Similar systems (replacing the positrons by holes) might be observed in semiconductors.Comment: Phys. Rev. Lett., in pres

    Positron-molecule interactions: resonant attachment, annihilation, and bound states

    Get PDF
    This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment and annihilation. Annihilation rates measured as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFR) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom. While the details are as yet unclear, intramolecular vibrational energy redistribution to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. Downshifts of the VFR from the vibrational mode energies have provided binding energies for thirty species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler-broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure

    Renormalized couplings and scaling correction amplitudes in the N-vector spin models on the sc and the bcc lattices

    Get PDF
    For the classical N-vector model, with arbitrary N, we have computed through order \beta^{17} the high temperature expansions of the second field derivative of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body centered cubic lattices. (The N-vector model is also known as the O(N) symmetric classical spin Heisenberg model or, in quantum field theory, as the lattice O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on the two lattices, and by carefully allowing for the corrections to scaling, we obtain updated estimates of the critical parameters and more accurate tests of the hyperscaling relation d\nu(N) +\gamma(N) -2\Delta_4(N)=0 for a range of values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the classical Heisenberg model]. Using the recently extended series for the susceptibility and for the second correlation moment, we also compute the dimensionless renormalized four point coupling constants and some universal ratios of scaling correction amplitudes in fair agreement with recent renormalization group estimates.Comment: 23 pages, latex, no figure

    Existence criteria for stabilization from the scaling behaviour of ionization probabilities

    Get PDF
    We provide a systematic derivation of the scaling behaviour of various quantities and establish in particular the scale invariance of the ionization probability. We discuss the gauge invariance of the scaling properties and the manner in which they can be exploited as consistency check in explicit analytical expressions, in perturbation theory, in the Kramers-Henneberger and Floquet approximation, in upper and lower bound estimates and fully numerical solutions of the time dependent Schroedinger equation. The scaling invariance leads to a differential equation which has to be satisfied by the ionization probability and which yields an alternative criterium for the existence of atomic bound state stabilization.Comment: 12 pages of Latex, one figur

    Search for Flavoured Multiquarks in a Simple Bag Model

    Get PDF
    We use a bag model to study flavoured mesonic (Qqqˉqˉ)(Qq\bar q\bar q) and baryonic (Q‟qqqq)({\overline Q}qqqq) states, where one heavy quark QQ is associated with light quarks or antiquarks, and search for possible stable multiquarks. No bound state is found. However some states lie not too high above their dissociation threshold, suggesting the possibility of resonances, or perhaps bound states in improved models.Comment: REVTEX, VERSION 3.
    • 

    corecore