2,211 research outputs found
A quantum group version of quantum gauge theories in two dimensions
For the special case of the quantum group we present an alternative approach to quantum gauge theories in
two dimensions. We exhibit the similarities to Witten's combinatorial approach
which is based on ideas of Migdal. The main ingredient is the Turaev-Viro
combinatorial construction of topological invariants of closed, compact
3-manifolds and its extension to arbitrary compact 3-manifolds as given by the
authors in collaboration with W. Mueller.Comment: 6 pages (plain TeX
Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes
This is the final version of the article. Available from the publisher via the DOI in this record.Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.This work was supported by the Portuguese Foundation for Science
and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to
S.C. Guimaraes) and CRUP/Treaty of Windsor (ACĂĂES INTEGRAD
AS 2009, B-33/09 to G. Steinberg and M. Schuster). G. Steinberg
acknowledges support from the Biotechnology and Biological Sciences
Research Counc
Positronic lithium, an electronically stable Li-e ground state
Calculations of the positron-Li system were performed using the Stochastic
Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0
ground state. Unlike previous calculations of this system, the system was found
to be stable against dissociation into the Ps + Li channel with a binding
energy of 0.00217 Hartree and is therefore electronically stable. This is the
first instance of a rigorous calculation predicting that it is possible to
combine a positron with a neutral atom and form an electronically stable bound
state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let
Grassmann-Gaussian integrals and generalized star products
In quantum scattering on networks there is a non-linear composition rule for
on-shell scattering matrices which serves as a replacement for the
multiplicative rule of transfer matrices valid in other physical contexts. In
this article, we show how this composition rule is obtained using Berezin
integration theory with Grassmann variables.Comment: 14 pages, 2 figures. In memory of Al.B. Zamolodichiko
Positron and positronium affinities in the work-formalism Hartree-Fock approximation
Positron binding to anions is investigated within the work formalism proposed
by Harbola and Sahni for the halide anions and the systems Li^- through O^-
excluding Be^- and N^-. The toal ground-state energies of the anion-positron
bound systems are empirically found to be an upper bound to the Hartree-Fock
energies. The computed expectation values as well as positron and positronium
affinities are in good agreement with their restricted Hartree-Fock
counterparts. Binding of a positron to neutral species is also investigated
using an iterative method.Comment: 12 pages, to appear in Physical Review
Multipositronic systems
The stability of Coulombic systems containing positrons are investigated by
the stochastic variational method. The existence of several new exotic atoms
are predicted, including HPse+, LiPs2e+, or (H-,Ps2). Similar systems
(replacing the positrons by holes) might be observed in semiconductors.Comment: Phys. Rev. Lett., in pres
Positron-molecule interactions: resonant attachment, annihilation, and bound states
This article presents an overview of current understanding of the interaction
of low-energy positrons with molecules with emphasis on resonances, positron
attachment and annihilation. Annihilation rates measured as a function of
positron energy reveal the presence of vibrational Feshbach resonances (VFR)
for many polyatomic molecules. These resonances lead to strong enhancement of
the annihilation rates. They also provide evidence that positrons bind to many
molecular species. A quantitative theory of VFR-mediated attachment to small
molecules is presented. It is tested successfully for selected molecules (e.g.,
methyl halides and methanol) where all modes couple to the positron continuum.
Combination and overtone resonances are observed and their role is elucidated.
In larger molecules, annihilation rates from VFR far exceed those explicable on
the basis of single-mode resonances. These enhancements increase rapidly with
the number of vibrational degrees of freedom. While the details are as yet
unclear, intramolecular vibrational energy redistribution to states that do not
couple directly to the positron continuum appears to be responsible for these
enhanced annihilation rates. Downshifts of the VFR from the vibrational mode
energies have provided binding energies for thirty species. Their dependence
upon molecular parameters and their relationship to positron-atom and
positron-molecule binding energy calculations are discussed. Feshbach
resonances and positron binding to molecules are compared with the analogous
electron-molecule (negative ion) cases. The relationship of VFR-mediated
annihilation to other phenomena such as Doppler-broadening of the gamma-ray
annihilation spectra, annihilation of thermalized positrons in gases, and
annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure
Renormalized couplings and scaling correction amplitudes in the N-vector spin models on the sc and the bcc lattices
For the classical N-vector model, with arbitrary N, we have computed through
order \beta^{17} the high temperature expansions of the second field derivative
of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body
centered cubic lattices. (The N-vector model is also known as the O(N)
symmetric classical spin Heisenberg model or, in quantum field theory, as the
lattice
O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on
the two lattices, and by carefully allowing for the corrections to scaling, we
obtain updated estimates of the critical parameters and more accurate tests of
the hyperscaling relation d\nu(N) +\gamma(N) -2\Delta_4(N)=0 for a range of
values of the spin dimensionality N, including
N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model],
N=2 [the XY model], N=3 [the classical Heisenberg model]. Using the recently
extended series for the susceptibility and for the second correlation moment,
we also compute the dimensionless renormalized four point coupling constants
and some universal ratios of scaling correction amplitudes in fair agreement
with recent renormalization group estimates.Comment: 23 pages, latex, no figure
Existence criteria for stabilization from the scaling behaviour of ionization probabilities
We provide a systematic derivation of the scaling behaviour of various
quantities and establish in particular the scale invariance of the ionization
probability. We discuss the gauge invariance of the scaling properties and the
manner in which they can be exploited as consistency check in explicit
analytical expressions, in perturbation theory, in the Kramers-Henneberger and
Floquet approximation, in upper and lower bound estimates and fully numerical
solutions of the time dependent Schroedinger equation. The scaling invariance
leads to a differential equation which has to be satisfied by the ionization
probability and which yields an alternative criterium for the existence of
atomic bound state stabilization.Comment: 12 pages of Latex, one figur
Search for Flavoured Multiquarks in a Simple Bag Model
We use a bag model to study flavoured mesonic and baryonic
states, where one heavy quark is associated with
light quarks or antiquarks, and search for possible stable multiquarks. No
bound state is found. However some states lie not too high above their
dissociation threshold, suggesting the possibility of resonances, or perhaps
bound states in improved models.Comment: REVTEX, VERSION 3.
- âŠ