117 research outputs found

    Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids

    Full text link
    Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil, water and surfactant have been observed experimentally and predicted theoretically by simple models for some time now, their numerical simulation has not been achieved so far. In this work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited for this purpose: the two-dimensional version of this model does indeed exhibit a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS illustrations included. To appear in J. Phys. Cond. Ma

    Entropic lattice Boltzmann methods

    Full text link
    We present a general methodology for constructing lattice Boltzmann models of hydrodynamics with certain desired features of statistical physics and kinetic theory. We show how a methodology of linear programming theory, known as Fourier-Motzkin elimination, provides an important tool for visualizing the state space of lattice Boltzmann algorithms that conserve a given set of moments of the distribution function. We show how such models can be endowed with a Lyapunov functional, analogous to Boltzmann's H, resulting in unconditional numerical stability. Using the Chapman-Enskog analysis and numerical simulation, we demonstrate that such entropically stabilized lattice Boltzmann algorithms, while fully explicit and perfectly conservative, may achieve remarkably low values for transport coefficients, such as viscosity. Indeed, the lowest such attainable values are limited only by considerations of accuracy, rather than stability. The method thus holds promise for high-Reynolds number simulations of the Navier-Stokes equations.Comment: 54 pages, 16 figures. Proc. R. Soc. London A (in press

    A Robust Numerical Method for Integration of Point-Vortex Trajectories in Two Dimensions

    Full text link
    The venerable 2D point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ODEs which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other inter-vortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.Comment: 21 pages, 4 figure

    Higher Order Methods for Simulations on Quantum Computers

    Full text link
    To efficiently implement many-qubit gates for use in quantum simulations on quantum computers we develop and present methods reexpressing exp[-i (H_1 + H_2 + ...) \Delta t] as a product of factors exp[-i H_1 \Delta t], exp[-i H_2 \Delta t], ... which is accurate to 3rd or 4th order in \Delta t. The methods we derive are an extended form of symplectic method and can also be used for the integration of classical Hamiltonians on classical computers. We derive both integral and irrational methods, and find the most efficient methods in both cases.Comment: 21 pages, Latex, one figur

    Interface Roughening in a Hydrodynamic Lattice-Gas Model with Surfactant

    Full text link
    Using a hydrodynamic lattice-gas model, we study interface growth in a binary fluid with various concentrations of surfactant. We find that the interface is smoothed by small concentrations of surfactant, while microemulsion droplets form for large surfactant concentrations. To assist in determining the stability limits of the interface, we calculate the change in the roughness and growth exponents α\alpha and β\beta as a function of surfactant concentration along the interface.Comment: 4 pages with 4 embedded ps figures. Requires psfig.tex. Will appear in PRL 14 Oct 199

    Correlations and Renormalization in Lattice Gases

    Full text link
    A complete formulation is given of an exact kinetic theory for lattice gases. This kinetic theory makes possible the calculation of corrections to the usual Boltzmann / Chapman-Enskog analysis of lattice gases due to the buildup of correlations. It is shown that renormalized transport coefficients can be calculated perturbatively by summing terms in an infinite series. A diagrammatic notation for the terms in this series is given, in analogy with the diagrammatic expansions of continuum kinetic theory and quantum field theory. A closed-form expression for the coefficients associated with the vertices of these diagrams is given. This method is applied to several standard lattice gases, and the results are shown to correctly predict experimentally observed deviations from the Boltzmann analysis.Comment: 94 pages, pure LaTeX including all figure

    Toward Generalized Entropy Composition with Different q Indices and H-Theorem

    Full text link
    An attempt is made to construct composable composite entropy with different qq indices of subsystems and address the H-theorem problem of the composite system. Though the H-theorem does not hold in general situations, it is shown that some composite entropies do not decrease in time in near-equilibrium states and factorized states with negligibly weak interaction between the subsystems.Comment: 25 pages, corrected some typos, to be published in J. Phys. Soc. Ja

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics

    Full text link
    We investigate the dynamical behavior of binary fluid systems in two dimensions using dissipative particle dynamics. We find that following a symmetric quench the domain size R(t) grows with time t according to two distinct algebraic laws R(t) = t^n: at early times n = 1/2, while for later times n = 2/3. Following an asymmetric quench we observe only n = 1/2, and if momentum conservation is violated we see n = 1/3 at early times. Bubble simulations confirm the existence of a finite surface tension and the validity of Laplace's law. Our results are compared with similar simulations which have been performed previously using molecular dynamics, lattice-gas and lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative particle dynamics is a promising method for simulating fluid properties in such systems.Comment: RevTeX; 22 pages, 5 low-resolution figures. For full-resolution figures, connect to http://www.tcm.phy.cam.ac.uk/~ken21/tension/tension.htm

    Nonextensive Thermostatistics and the H-Theorem

    Full text link
    The kinetic foundations of Tsallis' nonextensive thermostatistics are investigated through Boltzmann's transport equation approach. Our analysis follows from a nonextensive generalization of the ``molecular chaos hypothesis". For q>0q>0, the qq-transport equation satisfies an HH-theorem based on Tsallis entropy. It is also proved that the collisional equilibrium is given by Tsallis' qq-nonextensive velocity distribution.Comment: 4 pages, no figures, corrected some typo
    corecore