1,515 research outputs found

    Exact Gravitational Quasinormal Frequencies of Topological Black Holes

    Get PDF
    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies.Comment: 14 pages, Latex; v2 additional reference

    Symmetries and Observables for BF-theories in Superspace

    Get PDF
    The supersymmetric version of a topological quantum field theory describing flat connections, the super BF-theory, is studied in the superspace formalism. A set of observables related to topological invariants is derived from the curvature of the superspace. Analogously to the non-supersymmetric versions, the theory exhibits a vector-like supersymmetry. The role of the vector supersymmetry and an additional new symmetry of the action in the construction of observables is explained.Comment: 11 pages, LaTe

    Stability of Topological Black Holes

    Full text link
    We explore the classical stability of topological black holes in d-dimensional anti-de Sitter spacetime, where the horizon is an Einstein manifold of negative curvature. According to the gauge invariant formalism of Ishibashi and Kodama, gravitational perturbations are classified as being of scalar, vector, or tensor type, depending on their transformation properties with respect to the horizon manifold. For the massless black hole, we show that the perturbation equations for all modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of potential gravitational instabilities. We establish a necessary and sufficient condition for stability, in terms of the eigenvalues λ\lambda of the Lichnerowicz operator on the horizon manifold, namely λ4(d2)\lambda \geq -4(d-2). For the case of negative mass black holes, we show that a sufficient condition for stability is given by λ2(d3)\lambda \geq -2(d-3).Comment: 20 pages, Latex, v2 refined analysis of boundary conditions in dimensions 4,5,6, additional reference

    N=2 Supersymmetric Model with Dirac-Kahler Fermions from Generalized Gauge Theory in Two Dimensions

    Full text link
    We investigate the generalized gauge theory which has been proposed previously and show that in two dimensions the instanton gauge fixing of the generalized topological Yang-Mills action leads to a twisted N=2 supersymmetric action. We have found that the R-symmetry of N=2 supersymmetry can be identified with the flavour symmetry of Dirac-Kahler fermion formulation. Thus the procedure of twist allows topological ghost fields to be interpreted as the Dirac-Kahler matter fermions.Comment: 22 pages, LaTe

    Geometrical Finiteness, Holography, and the BTZ Black Hole

    Get PDF
    We show how a theorem of Sullivan provides a precise mathematical statement of a 3d holographic principle, that is, the hyperbolic structure of a certain class of 3d manifolds is completely determined in terms of the corresponding Teichmuller space of the boundary. We explore the consequences of this theorem in the context of the Euclidean BTZ black hole in three dimensions.Comment: 6 pages, Latex, Version to appear in Physical Review Letter

    State Sum Models and Simplicial Cohomology

    Get PDF
    We study a class of subdivision invariant lattice models based on the gauge group ZpZ_{p}, with particular emphasis on the four dimensional example. This model is based upon the assignment of field variables to both the 11- and 22-dimensional simplices of the simplicial complex. The property of subdivision invariance is achieved when the coupling parameter is quantized and the field configurations are restricted to satisfy a type of mod-pp flatness condition. By explicit computation of the partition function for the manifold RP3×S1RP^{3} \times S^{1}, we establish that the theory has a quantum Hilbert space which differs from the classical one.Comment: 28 pages, Latex, ITFA-94-13, (Expanded version with two new sections

    Quasinormal Modes and Black Hole Quantum Mechanics in 2+1 Dimensions

    Full text link
    We explore the relationship between classical quasinormal mode frequencies and black hole quantum mechanics in 2+1 dimensions. Following a suggestion of Hod, we identify the real part of the quasinormal frequencies with the fundamental quanta of black hole mass and angular momentum. We find that this identification leads to the correct quantum behavior of the asymptotic symmetry algebra, and thus of the dual conformal field theory. Finally, we suggest a further connection between quasinormal mode frequencies and the spectrum of a set of nearly degenerate ground states whose multiplicity may be responsible for the Bekenstein-Hawking entropy.Comment: 8 pages, LaTeX; references added and corrected, introduction and conclusion slightly expande

    On symmetries of Chern-Simons and BF topological theories

    Get PDF
    We describe constructing solutions of the field equations of Chern-Simons and topological BF theories in terms of deformation theory of locally constant (flat) bundles. Maps of flat connections into one another (dressing transformations) are considered. A method of calculating (nonlocal) dressing symmetries in Chern-Simons and topological BF theories is formulated

    Area Spectrum of Extremal Reissner-Nordstr\"om Black Holes from Quasi-normal Modes

    Full text link
    Using the quasi-normal modes frequency of extremal Reissner-Nordstr\"om black holes, we obtain area spectrum for these type of black holes. We show that the area and entropy black hole horizon are equally spaced. Our results for the spacing of the area spectrum differ from that of schwarzschild black holes.Comment: 6 pages, no figure, accepted for publication in Phys. Rev.

    The Several Guises of the BRST Symmetry

    Get PDF
    We present several forms in which the BRST transformations of QCD in covariant gauges can be cast. They can be non-local and even not manifestly covariant. These transformations may be obtained in the path integral formalism by non standard integrations in the ghost sector or by performing changes of ghost variables which leave the action and the path integral measure invariant. For different changes of ghost variables in the BRST and anti-BRST transformations these two transformations no longer anticommute.Comment: 3 pages, revte
    corecore