83 research outputs found
Size-dependent Surface States on Strained Cobalt Nanoislands on Cu(111)
Low-temperature scanning tunneling spectroscopy over Co nanoislands on
Cu(111) showed that the surface states of the islands vary with their size.
Occupied states exhibit a sizeable downward energy shift as the island size
decreases. The position of the occupied states also significantly changes
across the islands. Atomic-scale simulations and ab inito calculations
demonstrate that the driving force for the observed shift is related to
size-dependent mesoscopic relaxations in the nanoislands.Comment: 4 pages, 4 figure
Transport properties of heavy particles in high Reynolds number turbulence
The statistical properties of heavy particle trajectories in high Reynolds
numbers turbulent flows are analyzed. Dimensional analysis assuming Kolmogorov
scaling is compared with the result of numerical simulation using a synthetic
turbulence advecting field. The non-Markovian nature of the fluid velocity
statistics along the solid particle trajectories is put into evidence, and its
relevance in the derivation of Lagrangian transport models is discussed.Comment: 30 pages, 11 eps figures included. To appear in Physics of Fluid
Adlayer core-level shifts of random metal overlayers on transition-metal substrates
We calculate the difference of the ionization energies of a core-electron of
a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a
fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using
density-functional-theory. We analyze the initial-state contributions and the
screening effects induced by the core hole, and study the influence of the
alloy composition for a number of noble metal-transition metal systems. Data
are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x)
Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our
analysis clearly indicates the importance of final-state screening effects for
the interpretation of measured core-level shifts. Calculated deviations from
the initial-state trends are explained in terms of the change of inter- and
intra-atomic screening upon alloying. A possible role of alloying on the
chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
- …