79 research outputs found

    Traversable Wormholes in (2+1) and (3+1) Dimensions with a Cosmological Constant

    Get PDF
    Macroscopic traversable wormhole solutions to Einstein's field equations in (2+1)(2+1) and (3+1)(3+1) dimensions with a cosmological constant are investigated. Ensuring traversability severely constrains the material used to generate the wormhole's spacetime curvature. Although the presence of a cosmological constant modifies to some extent the type of matter permitted (for example it is possible to have a positive energy density for the material threading the throat of the wormhole in (2+1)(2+1) dimensions), the material must still be ``exotic'', that is matter with a larger radial tension than total mass-energy density multiplied by c2c^2. Two specific solutions are applied to the general cases and a partial stability analysis of a (2+1)(2+1) dimensional solution is explored.Comment: 19 pgs. WATPHYS TH-93/0

    The Wahlquist metric cannot describe an isolated rotating body

    Full text link
    It is proven that the Wahlquist perfect fluid space-time cannot be smoothly joined to an exterior asymptotically flat vacuum region. The proof uses a power series expansion in the angular velocity, to a precision of the second order. In this approximation, the Wahlquist metric is a special case of the rotating Whittaker space-time. The exterior vacuum domain is treated in a like manner. We compute the conditions of matching at the possible boundary surface in both the interior and the vacuum domain. The conditions for matching the induced metrics and the extrinsic curvatures are mutually contradictory.Comment: 13 pages, 0 figure

    Algorithmic construction of static perfect fluid spheres

    Full text link
    Perfect fluid spheres, both Newtonian and relativistic, have attracted considerable attention as the first step in developing realistic stellar models (or models for fluid planets). Whereas there have been some early hints on how one might find general solutions to the perfect fluid constraint in the absence of a specific equation of state, explicit and fully general solutions of the perfect fluid constraint have only very recently been developed. In this article we present a version of Lake's algorithm [Phys. Rev. D 67 (2003) 104015; gr-qc/0209104] wherein: (1) we re-cast the algorithm in terms of variables with a clear physical meaning -- the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulae for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of inter-relationships among many of the previously known exact solutions, and generate several new exact solutions.Comment: Uses revtex4. V2: Minor clarifications, plus an additional section on how to turn the algorithm into a solution generalization technique. This version accepted for publication in Physical Review D. Now 7 page

    Traversable Wormholes Construction in 2+1 Dimensions

    Full text link
    We study traversable Lorentzian wormholes in the three-dimensional low energy string theory by adding some matter source involving a dilaton field. It will be shown that there are two-different types of wormhole solutions such as BTZ and black string wormholes depending on the dilaton backgrounds, respectively. We finally obtain the desirable solutions which confine exotic matter near the throat of wormhole by adjusting NS charge.Comment: 12 pages, 4 figures, JHEP style, one reference adde

    Static circularly symmetric perfect fluid solutions with an exterior BTZ metric

    Full text link
    In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have regularity at the origin throughout the analysis of a set of linearly independent invariants. We also obtain an exact solution of the Einstein equations, with the corresponding equation of state p=p(ρ)p=p(\rho), which is regular at the origin.Comment: 10 pages, 1 figure, revtex 4. This paper is in honor of Alberto Garcia's sixtieth birthday. Accepted by Gen. Rel. Gra

    The Tolman VII solution, trapped null orbits and w - modes

    Get PDF
    The Tolman VII solution is an exact static spherically symmetric perfect fluid solution of Einstein's equations that exhibits a surprisingly good approximation to a neutron star. We show that this solution exhibits trapped null orbits in a causal region even for a tenuity (total radius to mass ratio) >3> 3. In this region the dynamical part of the potential for axial w - modes dominates over the centrifugal part.Comment: 5 pages revtex. 10 figures png. Further information at http://grtensor.phy.queensu.ca/tolmanvii

    All static spherically symmetric perfect fluid solutions of Einstein's Equations

    Full text link
    An algorithm based on the choice of a single monotone function (subject to boundary conditions) is presented which generates all regular static spherically symmetric perfect fluid solutions of Einstein's equations. For physically relevant solutions the generating functions must be restricted by non-trivial integral-differential inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of previously unknown physically interesting exact solutions.Comment: Final form to appear in Phys Rev D. Includes a number of clarification

    Petrov types of slowly rotating fluid balls

    Get PDF
    Circularly rotating axisymmetric perfect fluid space-times are investigated to second order in the small angular velocity. The conditions of various special Petrov types are solved in a comoving tetrad formalism. A number of theorems are stated on the possible Petrov types of various fluid models. It is shown that Petrov type II solutions must reduce to the de Sitter spacetime in the static limit. Two space-times with a physically satisfactory energy-momentum tensor are investigated in detail. For the rotating incompressible fluid, it is proven that the Petrov type cannot be D. The equation of the rotation function ω\omega can be solved for the Tolman type IV fluid in terms of quadratures. It is also shown that the rotating version of the Tolman IV space-time cannot be Petrov type D.Comment: 14 pages, version to appear in Gen. Rel. Gra

    Relativistic Compact Objects in Isotropic Coordinates

    Full text link
    We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic type fluid with an equation of state p=γρp=\gamma \rho is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of Physic

    Phantom Wormholes in (2+1)-dimensions

    Full text link
    In this paper, we have constructed a (2+1)-dimensional wormhole using inhomogeneous and anisotropic distribution of phantom energy. We have determined the exact form of the equation of state of phantom energy that supports the wormhole structure. Interestingly, this equation of state is linear but variable one and is dependent only on the radial parameter of the model.Comment: 10 pages, 5 figure
    corecore