213,768 research outputs found

    Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    Full text link
    We propose a way for generating nn-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants, and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.Comment: 3 figures, accepted by Phys. Rev.

    Evolutionary Computing for Operating Point Analysis of Nonlinear Circuits

    Full text link
    The DC operating point of an electronic circuit is conventionally found using the Newton-Raphson method. This method is not globally convergent and can only find one solution of the circuit at a time. In this paper, evolutionary computing methods, including Genetic Algorithms, Evolutionary Programming, Evolutionary Strategies and Differential Evolution are explored as possible alternatives to Newton-Raphson. These techniques have been implemented in a trial simulator. Results are presented showing that Evolutionary Computing methods are globally convergent and can find multiple solutions to circuits. The CPU time for these new methods is poor compared with Newton-Raphson, but better implementations and the use of hybrid methods suggest that further work in this area would prove fruitful

    Nature of Quasielectrons and the Continuum of Neutral Bulk Excitations in the Laughlin Quantum Hall Fluids

    Full text link
    We construct model wavefunctions for a family of single-quasielectron states supported by the ν=1/3\nu=1/3 fractional quantum Hall (FQH) fluid. The charge ee^* = e/3e/3 quasielectron state is identified as a composite of a charge-2e2e^* quasiparticle and a e-e^* quasihole, orbiting around their common center of charge with relative angular momentum n>0n\hbar > 0, and corresponds precisely to the "composite fermion" construction based on a filled n=0n=0 Landau level plus an extra particle in level n>0n > 0. An effective three-body model (one 2e2e^* quasiparticle and two e-e^* quasiholes) is introduced to capture the essential physics of the neutral bulk excitations.Comment: 4 pages, 3 figs, minor modifications for the published versio

    A Lee-Yang--inspired functional with a density--dependent neutron-neutron scattering length

    Full text link
    Inspired by the low--density Lee-Yang expansion for the energy of a dilute Fermi gas of density ρ\rho and momentum kFk_F, we introduce here a Skyrme--type functional that contains only ss-wave terms and provides, at the mean--field level, (i) a satisfactory equation of state for neutron matter from extremely low densities up to densities close to the equilibrium point, and (ii) a good--quality equation of state for symmetric matter at density scales around the saturation point. This is achieved by using a density--dependent neutron-neutron scattering length a(ρa(\rho) which satisfies the low--density limit (for Fermi momenta going to zero) and has a density dependence tuned in such a way that the low--density constraint a(ρ)kF1|a(\rho) k_F| \le 1 is satisfied at all density scales.Comment: 5 figure

    Phase Evolution in a Kondo Correlated System

    Full text link
    The coherence and phase evolution of electrons in a mesoscopic system in the Kondo correlated regime were studied. The Kondo effect, in turn, is one of the most fundamental many-body effects where a localized spin interacts with conduction electrons in a conductor. Results were obtained by embedding a quantum dot (QD) in a double path electronic interferometer and measuring interference of electron waves. The Phase was found to evolve in a range twice as large as the theoretically predicted one. Moreover, the phase proved to be highly sensitive to the onset of Kondo correlation, thus serving as a new fingerprint of the Kondo effect.Comment: 4 pages, 4 figures. typos corrected. Changed to APS PRL styl

    From dilute matter to the equilibrium point in the energy--density--functional theory

    Full text link
    Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.Comment: 4 figures, 2 table
    corecore