29,562 research outputs found

    Solution to the Landau-Zener problem via Susskind-Glogower operators

    Full text link
    We show that, by means of a right-unitary transformation, the fully quantized Landau-Zener Hamiltonian in the weak-coupling regime may be solved by using known solutions from the standard Landau-Zener problem. In the strong-coupling regime, where the rotating wave approximation is not valid, we show that the quantized Landau-Zener Hamiltonian may be diagonalized in the atomic basis by means of a unitary transformation; hence allowing numerical solutions for the few photons regime via truncation.Comment: 6 pages, 5 figure

    Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Full text link
    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin. This constitutes a reduction of the number of conditions needed to observe self-similarity in graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero, L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis, arXiv:1503.03412v1, 2015]

    Propagation and perfect transmission in three-waveguide axially varying couplers

    Get PDF
    We study a class of three-waveguide axially varying structures whose dynamics are described by the su(3) algebra. Their analytic propagator can be found based on the corresponding Lie group generators. In particular, we show that the field propagator corresponding to three-waveguide structures that have arbitrarily varying coupling coefficients and identical refractive indices is associated with the orbital angular momentum algebra. The conditions necessary to achieve perfect transmission from the first to the last waveguide element are obtained and particular cases are elucidated analytically.Comment: 5 pages, 4 figure

    Generation of twin Fock states via transition from a two-component Mott insulator to a superfluid

    Get PDF
    We propose the dynamical creation of twin Fock states, which exhibit Heisenberg limited interferometric phase sensitivities, in an optical lattice. In our scheme a two-component Mott insulator with two bosonic atoms per lattice site is melted into a superfluid. This process transforms local correlations between hyperfine states of atom pairs into multi-particle correlations extending over the whole system. The melting time does not scale with the system size which makes our scheme experimentally feasible.Comment: 4 pages, 4 figure

    Signatures of superfluidity for Feshbach-resonant Fermi gases

    Full text link
    We consider atomic Fermi gases where Feshbach resonances can be used to continuously tune the system from weak to strong interaction regime, allowing to scan the whole BCS-BEC crossover. We show how a probing field transferring atoms out of the superfluid can be used to detect the onset of the superfluid transition in the high-TcT_c and BCS regimes. The number of transferred atoms, as a function of the energy given by the probing field, peaks at the gap energy. The shape of the peak is asymmetric due to the single particle excitation gap. Since the excitation gap includes also a pseudogap contribution, the asymmetry alone is not a signature of superfluidity. Incoherent nature of the non-condensed pairs leads to broadening of the peak. The pseudogap and therefore the broadening decay below the critical temperature, causing a drastic increase in the asymmetry. This provides a signature of the transition.Comment: Revised version, accepted to Phys. Rev. Letters. Figures changed, explanations adde
    corecore