185 research outputs found
Recommended from our members
Mechanistic Study Of Plasma Damage Of Low k Dielectric Surfaces
Plasma damage to low k dielectric materials was investigated from a mechanistic point of view. Low k dielectric films were treated by plasma Ar, O-2, N-2/H-2, N-2 and H-2 in a standard RIE chamber and the damage was characterized by Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS), X-Ray Reflectivity (XRR), Fourier Transform Infrared Spectroscopy (FTIR) and Contact Angle measurements. Both carbon depletion and surface densification were observed on the top surface of damaged low k materials while the bulk remained largely unaffected. Plasma damage was found to be a complicated phenomenon involving both chemical and physical effects, depending on chemical reactivity and the energy and mass of the plasma species. A downstream hybrid plasma source with separate ions and atomic radicals was employed to study their respective roles in the plasma damage process. Ions were found to play a more important role in the plasma damage process. The dielectric constant of low k materials can increase up to 20% due to plasma damage and we attributed this to the removal of the methyl group making the low k surface hydrophilic. Annealing was generally effective in mitigating moisture uptake to restore the k value but the recovery was less complete for higher energy plasmas. Quantum chemistry calculation confirmed that physisorbed water in low k materials induces the largest increase of dipole moments in comparison with changes of surface bonding configurations, and is primarily responsible for the dielectric constant increase.Microelectronics Research Cente
Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum
Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academiesβ publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010βs top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century [1]. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question [1β12] in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences [13β16]. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [ www.pkal.org])
lpxC and yafS are the Most Suitable Internal Controls to Normalize Real Time RT-qPCR Expression in the Phytopathogenic Bacteria Dickeya dadantii
Background: Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. [br/]
Results: We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. [br/]
Conclusions: We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria
A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Integration of a Scanning Electron Microscope with a Transition-Edge Sensor Spectrometer
X-ray nanotomography is a powerful tool for the characterization of nanoscale
materials and structures, but is difficult to implement due to competing
requirements on X-ray flux and spot size. Due to this constraint,
state-of-the-art nanotomography is predominantly performed at large synchrotron
facilities. Compact X-ray nanotomography tools operated in standard analysis
laboratories exist, but are limited by X-ray optics and destructive sample
preparation techniques. We present a laboratory-scale nanotomography instrument
that achieves nanoscale spatial resolution while changing the limitations of
conventional tomography tools. The instrument combines the electron beam of a
scanning electron microscope (SEM) with the precise, broadband X-ray detection
of a superconducting transition-edge sensor (TES) microcalorimeter. The
electron beam generates a highly focused X-ray spot in a metal target, while
the TES spectrometer isolates target photons with high signal-to-noise. This
combination of a focused X-ray spot, energy-resolved X-ray detection, and
unique system geometry enable nanoscale, element-specific X-ray imaging in a
compact footprint. The proof-of-concept for this approach to X-ray
nanotomography is demonstrated by imaging 160 nm features in three dimensions
in a Cu-SiO2 integrated circuit, and a path towards finer resolution and
enhanced imaging capabilities is discussed.Comment: The following article has been submitted to Physical Review Applie
Phase I study of pegylated liposomal doxorubicin and the multidrug-resistance modulator, valspodar
Valspodar, a P-glycoprotein modulator, affects pharmacokinetics of doxorubicin when administered in combination, resulting in doxorubicin dose reduction. In animal models, valspodar has minimal interaction with pegylated liposomal doxorubicin (PEG-LD). To determine any pharmacokinetic interaction in humans, we designed a study to determine maximum tolerated dose, dose-limiting toxicity (DLT), and pharmacokinetics of total doxorubicin, in PEG-LD and valspodar combination therapy in patients with advanced malignancies. Patients received PEG-LD 20β25βmgβmβ2 intravenously over 1βh for cycle one. In subsequent 2-week cycles, valspodar was administered as 72βh continuous intravenous infusion with PEG-LD beginning at 8βmgβmβ2 and escalated in an accelerated titration design to 25βmgβmβ2. Pharmacokinetic data were collected with and without valspodar. A total of 14 patients completed at least two cycles of therapy. No DLTs were observed in six patients treated at the highest level of PEG-LD 25βmgβmβ2. The most common toxicities were fatigue, nausea, vomiting, mucositis, palmar plantar erythrodysesthesia, diarrhoea, and ataxia. Partial responses were observed in patients with breast and ovarian carcinoma. The mean (range) total doxorubicin clearance decreased from 27 (10β73) mlβhβ1βmβ2 in cycle 1 to 18 (3β37) mlβhβ1βmβ2 with the addition of valspodar in cycle 2 (P=0.009). Treatment with PEG-LD 25βmgβmβ2 in combination with valspodar results in a moderate prolongation of total doxorubicin clearance and half-life but did not increase the toxicity of this agent
Cooperative binding mitigates the high-dose hook effect
Background: The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. Results: We use a combinatorial model of a βperfect linker proteinβ (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+/calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. Conclusions: We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of both the allosteric protein itself and its allosteric activators. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0447-8) contains supplementary material, which is available to authorized users
The Genome of Borrelia recurrentis, the Agent of Deadly Louse-Borne Relapsing Fever, Is a Degraded Subset of Tick-Borne Borrelia duttonii
In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163β1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains
The T7-Related Pseudomonas putida Phage Ο15 Displays Virion-Associated Biofilm Degradation Properties
Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage Ο15, a βT7-like virusβ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage Ο15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of Ο15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and Ο15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy
- β¦