4,917 research outputs found

    Segmental approach to the problems of venous thromboembolism

    Get PDF
    Many problems in the management of venous thromboembolism remain unsolved because there has been a failure to undertake adequate study of the correlation of clinical and pathological events, and to determine the natural history and prognosis of the disease against which the results of treatment may be measured.This thesis is based on study of a large series of cases of venous thromboembolism in which the pattern of venous involvement was determined by venography and /or surgical exploration. From the results of this study it is concluded that a segmental concept of venous thromboembolism is fundamental to the understanding of the clinical manifestations and to a rational approach to the many problems that are encountered.The study demonstrates the arrangements of the collateral circulation which determine the varying clinical picture with venous occlusion at different levels in the deep venous system. The collateral circulation to the femoro- popliteal segment is always adequate and venous insufficiency does not result. In the iliofemoral segment, the collateral arrangements are inadequate and venous insufficiency results.Contrary to popular belief thrombosis in the iliofemoral venous segment is frequently primary not secondary to propagation from the lower leg. Thrombosis of the upper segment is not only the most important type of thrombosis in regard to leg morbidity but is the common source of major pulmonary embolism. On the basis of the results of these studies a rational approach to treatment is proposed, emphasis being placed on the importance of venography in diagnosis and management

    Spectral variation in the X-ray pulsar GX 1+4 during a low-flux episode

    Get PDF
    The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51ks between 1996 July 19 - 21. During this period the flux decreased smoothly from an initial mean level of ~ 6 X 10^36 erg/s to a minimum of ~ 4 X 10^35 erg/s (2-60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation. BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals. The single best-fitting spectral model was based on a component originating from thermal photons with kT ~ 1 keV Comptonised by a plasma of temperature kT \~ 7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density nH contributing to the mean spectral change. A strong flare of duration 50 s was observed during the interval of minimum flux, with the peak flux ~ 20 times the mean level. Although beaming effects are likely to mask the true variation in Mdot thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.Comment: 8 pages, 3 figures, submitted to MNRA

    On the Gannon-Lee Singularity Theorem in Higher Dimensions

    Full text link
    The Gannon-Lee singularity theorems give well-known restrictions on the spatial topology of singularity-free (i.e., nonspacelike geodesically complete), globally hyperbolic spacetimes. In this paper, we revisit these classic results in the light of recent developments, especially the failure in higher dimensions of a celebrated theorem by Hawking on the topology of black hole horizons. The global hyperbolicity requirement is weakened, and we expand the scope of the main results to allow for the richer variety of spatial topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra

    Non-Existence of Black Holes in Certain Λ<0\Lambda<0 Spacetimes

    Full text link
    Assuming certain asymptotic conditions, we prove a general theorem on the non-existence of static regular (i.e., nondegenerate) black holes in spacetimes with a negative cosmological constant, given that the fundamental group of space is infinite. We use this to rule out the existence of regular negative mass AdS black holes with Ricci flat scri. For any mass, we also rule out a class of conformally compactifiable static black holes whose conformal infinity has positive scalar curvature and infinite fundamental group, subject to our asymptotic conditions. In a limited, but important, special case our result adds new support to the AdS/CFT inspired positive mass conjecture of Horowitz and Myers.Comment: 17 pages, Latex. Typos corrected, minor changes to the text. Accepted for publication in Classical and Quantum Gravit

    An X-Ray Jet from a White Dwarf - Detection of the Collimated Outflow from CH Cygni with Chandra

    Full text link
    Most symbiotic stars consist of a white dwarf accreting material from the wind of a red giant. An increasing number of these objects have been found to produce jets. Analysis of archival Chandra data of the symbiotic system CH Cygni reveals faint extended emission to the south, aligned with the optical and radio jets seen in earlier HST and VLA observations. CH Cygni thus contains only the second known white dwarf with an X-ray jet, after R Aquarii. The X-rays from symbiotic-star jets appear to be produced when jet material is shock-heated following collision with surrounding gas, as with the outflows from some protostellar objects and bipolar planetary nebulae.Comment: 4 & a bit pages, 4 figures, accepted by ApJL; uses emulateapj.cls and revtex4. Minor changes following referees report, & shortened to meet page limi

    A population study of type II bursts in the Rapid Burster

    Get PDF
    Type II bursts are thought to arise from instabilities in the accretion flow onto a neutron star in an X-ray binary. Despite having been known for almost 40 years, no model can yet satisfactorily account for all their properties. To shed light on the nature of this phenomenon and provide a reference for future theoretical work, we study the entire sample of Rossi X-ray Timing Explorer data of type II bursts from the Rapid Burster (MXB 1730-335). We find that type II bursts are Eddington-limited in flux, that a larger amount of energy goes in the bursts than in the persistent emission, that type II bursts can be as short as 0.130 s, and that the distribution of recurrence times drops abruptly below 15-18 s. We highlight the complicated feedback between type II bursts and the NS surface thermonuclear explosions known as type I bursts, and between type II bursts and the persistent emission. We review a number of models for type II bursts. While no model can reproduce all the observed burst properties and explain the source uniqueness, models involving a gating role for the magnetic field come closest to matching the properties of our sample. The uniqueness of the source may be explained by a special combination of magnetic field strength, stellar spin period and alignment between the magnetic field and the spin axis.Comment: Accepted 2015 February 12. Received 2015 February 10; in original form 2014 December 1

    Indications for a slow rotator in the Rapid Burster from its thermonuclear bursting behaviour

    Get PDF
    We perform time-resolved spectroscopy of all the type I bursts from the Rapid Burster (MXB 1730-335) detected with the Rossi X-ray Timing Explorer. Type I bursts are detected at high accretion rates, up to \sim 45% of the Eddington luminosity. We find evidence that bursts lacking the canonical cooling in their time-resolved spectra are, none the less, thermonuclear in nature. The type I bursting rate keeps increasing with the persistent luminosity, well above the threshold at which it is known to abruptly drop in other bursting low-mass X-ray binaries. The only other known source in which the bursting rate keeps increasing over such a large range of mass accretion rates is the 11 Hz pulsar IGR J17480−-2446. This may indicate a similarly slow spin for the neutron star in the Rapid Burster

    Chandra observations of the millisecond X-ray pulsar IGR J00291+5934 in quiescence

    Get PDF
    In this Paper we report on our analysis of three Chandra observations of the accretion-powered millisecond X-ray pulsar IGR J00291+5934 obtained during the late stages of the 2004 outburst. We also report the serendipitous detection of the source in quiescence by ROSAT during MJD 48830-48839. The detected 0.3-10 keV source count rates varied significantly between the Chandra observations from (7.2+-1.2)x10^-3, (6.8+-0.9)x10^-3, and (1.4+-0.1)x10^-2 counts per second for the 1st, 2nd, and 3rd Chandra observation, on MJD 53371.88, 53383.99, and 53407.57, respectively. The count rate for the 3rd observation is 2.0+-0.4 times as high as that of the average of the first two observations. The unabsorbed 0.5-10 keV source flux for the best-fit power-law model to the source spectrum was (7.9+-2.5)x10^-14, (7.3+-2.0)x10^-14, and (1.17+-0.22)x10^-13 erg cm^-2 s^-1 for the 1st, 2nd, and 3rd Chandra observation, respectively. We find that this source flux is consistent with that found by ROSAT [~(5.4+-2.4)x10^-14 erg cm^-2 s^-1]. Under the assumption that the interstellar extinction, N_H, does not vary between the observations, we find that the blackbody temperature during the 2nd Chandra observation is significantly higher than that during the 1st and 3rd observation. Furthermore, the effective temperature of the neutron star derived from fitting an absorbed blackbody or neutron star atmosphere model to the data is rather high in comparison with many other neutron star soft X-ray transients in quiescence, even during the 1st and 3rd observation. If we assume that the source quiescent luminosity is similar to that measured for two other accretion powered millisecond pulsars in quiescence, the distance to IGR J00291+5934 is 2.6-3.6 kpc.Comment: 7 pages, 3 Figures, accepted for publication in MNRA

    Summary of the recent short-haul systems studies

    Get PDF
    The results of several NASA sponsored high density short haul air transportation systems studies are reported as well as analyzed. Included are the total STOL systems analysis approach, a companion STOL composites study conducted in conjunction with STOL systems studies, a STOL economic assessment study, an evaluation of STOL aircraft with and without externally blown flaps, an alternative STOL systems for the San Francisco Bay Area, and the quiet, clean experimental engine studies. Assumptions and results of these studies are summarized, their differences, analyzed, and the results compared with those in-house analyses performed by the Systems Studies Division of the NASA-Ames Research Center. Pertinent conclusions are developed and the more significant technology needs for the evaluation of a viable short haul transportation system are identified
    • 

    corecore