2,578 research outputs found

    Phase Transitions in Generalised Spin-Boson (Dicke) Models

    Full text link
    We consider a class of generalised single mode Dicke Hamiltonians with arbitrary boson coupling in the pseudo-spin xx-zz plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke Hamiltonians. Only in the latter case (orthogonal static and fluctuating couplings), does the parity-symmetry induced quantum phase transition occur.Comment: 6 pages, 5 figue

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Truncation method for Green's functions in time-dependent fields

    Full text link
    We investigate the influence of a time dependent, homogeneous electric field on scattering properties of non-interacting electrons in an arbitrary static potential. We develop a method to calculate the (Keldysh) Green's function in two complementary approaches. Starting from a plane wave basis, a formally exact solution is given in terms of the inverse of a matrix containing infinitely many 'photoblocks' which can be evaluated approximately by truncation. In the exact eigenstate basis of the scattering potential, we obtain a version of the Floquet state theory in the Green's functions language. The formalism is checked for cases such as a simple model of a double barrier in a strong electric field. Furthermore, an exact relation between the inelastic scattering rate due to the microwave and the AC conductivity of the system is derived which in particular holds near or at a metal-insulator transition in disordered systems.Comment: to appear in Phys. Rev. B., 21 pages, 3 figures (ps-files

    Shot noise spectrum of superradiant entangled excitons

    Full text link
    The shot noise produced by tunneling of electrons and holes into a double dot system incorporated inside a p-i-n junction is investigated theoretically. The enhancement of the shot noise is shown to originate from the entangled electron-hole pair created by superradiance. The analogy to the superconducting cooper pair box is pointed out. A series of Zeno-like measurements is shown to destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004

    Current noise of a quantum dot p-i-n junction in a photonic crystal

    Full text link
    The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a three-dimensional photonic crystal is investigated. Radiative decay properties of quantum dot excitons can be obtained from the observation of the current noise. The characteristic of the photonic band gap is revealed in the current noise with discontinuous behavior. Applications of such a device in entanglement generation and emission of single photons are pointed out, and may be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005

    Non-equilibrium Entanglement and Noise in Coupled Qubits

    Full text link
    We study charge entanglement in two Coulomb-coupled double quantum dots in thermal equilibrium and under stationary non-equilibrium transport conditions. In the transport regime, the entanglement exhibits a clear switching threshold and various limits due to suppression of tunneling by Quantum Zeno localisation or by an interaction induced energy gap. We also calculate quantum noise spectra and discuss the inter-dot current correlation as an indicator of the entanglement in transport experiments.Comment: 4 pages, 4 figure

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs
    • …
    corecore