81 research outputs found
Two-surface wave decay: improved analytical theory and effects on electron acceleration
Two-surface wave decay (TSWD), i.e. the parametric excitation of electron
surface waves, was recently proposed as an absorption mechanism in the
interaction of ultrashort, intense laser pulses with solid targets. We present
an extension of the fluid theory of TSWD to a warm plasma which treats boundary
effects consistently. We also present test-particle simulations showing
localized enhancement of electron acceleration by TSWD fields; this effect
leads to a modulation of the current density entering into the target and may
seed current filamentation instabilities.Comment: 4 figures, submitted to Appl.Phys.B (special issue from HFSW X
conference, Biarritz, France, Oct 12-15 2003); slightly revised tex
Two-Surface Wave Decay
Using an analytical model we discuss the parametric excitation of pairs of
electron surface waves (ESW) in the interaction of an ultrashort, intense laser
pulse with an overdense plasma which has a step-like density profile. The ESWs
can be excited either by the electric or by the magnetic part of the Lorentz
force exerted by the laser and, correspondingly, have frequencies around
or , where is the laser frequency.Comment: 4 EPS figures, Revte
Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse
The dynamics of electric field generation and radial acceleration of ions by
a laser pulse of relativistic intensity propagating in an underdense plasma has
been investigated using an one-dimensional electrostatic, ponderomotive model
developed to interpret experimental measurements of electric fields [S. Kar et
al, New J. Phys. *9*, 402 (2007)]. Ions are spatially focused at the edge of
the charge-displacement channel, leading to hydrodynamical breaking, which in
turns causes the heating of electrons and an "echo" effect in the electric
field. The onset of complete electron depletion in the central region of the
channel leads to a smooth transition to a "Coulomb explosion" regime and a
saturation of ion acceleration.Comment: 9 pages, 7 figures, final revised version, to appear on Plasma Phys.
Contr. Fus., special issue on "Laser and Plasma Accelerators", scheduled for
February, 200
Ion dynamics and coherent structure formation following laser pulse self-channeling
The propagation of a superintense laser pulse in an underdense, inhomogeneous
plasma has been studied numerically by two-dimensional particle-in-cell
simulations on a time scale extending up to several picoseconds. The effects of
the ion dynamics following the charge-displacement self-channeling of the laser
pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of
the plasma channel walls, causing an inversion of the radial space-charge field
and the filamentation of the laser pulse. At later times a number of
long-lived, quasi-periodic field structures are observed and their dynamics is
characterized with high resolution. Inside the plasma channel, a pattern of
electric and magnetic fields resembling both soliton- and vortex-like
structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download
a high-resolution version), to appear in Plasma Physics and Controlled Fusion
(Dec. 2007), special issue containing invited papers from the 34th EPS
Conference on Plasma Physics (Warsaw, July 2007
Charged State of a Spherical Plasma in Vacuum
The stationary state of a spherically symmetric plasma configuration is
investigated in the limit of immobile ions and weak collisions. Configurations
with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind
an electron distribution function with an energy cutoff. Such charged plasma
configurations are of interest for the study of Coulomb explosions and ion
acceleration from small clusters irradiated by ultraintense laser pulses and
for the investigation of ion bunches propagation in a plasma
Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies
The generation of harmonics by atoms or ions in a two-color, coplanar field
configuration with commensurate frequencies is investigated through both, an
analytical calculation based on the Lewenstein model and the numerical ab
initio solution of the time-dependent Schroedinger equation of a
two-dimensional model ion. Through the analytical model, selection rules for
the harmonic orders in this field configuration, a generalized cut-off for the
harmonic spectra, and an integral expression for the harmonic dipole strength
is provided. The numerical results are employed to test the predictions of the
analytical model. The scaling of the cut-off as a function of both, one of the
laser intensities and frequency ratio , as well as entire spectra for
different and laser intensities are presented and analyzed. The
theoretical cut-off is found to be an upper limit for the numerical results.
Other discrepancies between analytical model and numerical results are
clarified by taking into account the probabilities of the absorption processes
involved.Comment: 8 figure
C in intense femtosecond laser pulses: nonlinear dipole response and ionization
We study the interaction of strong femtosecond laser pulses with the C
molecule employing time-dependent density functional theory with the ionic
background treated in a jellium approximation. The laser intensities considered
are below the threshold of strong fragmentation but too high for perturbative
treatments such as linear response. The nonlinear response of the model to
excitations by short pulses of frequencies up to 45eV is presented and analyzed
with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond
laser pulses of 800nm wavelength ionization is found to occur multiphoton-like
rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations
Numerically determined ionization rates for the field ionization of atomic
hydrogen in strong and short laser pulses are presented. The laser pulse
intensity reaches the so-called "barrier suppression ionization" regime where
field ionization occurs within a few half laser cycles. Comparison of our
numerical results with analytical theories frequently used shows poor
agreement. An empirical formula for the "barrier suppression ionization"-rate
is presented. This rate reproduces very well the course of the numerically
determined ground state populations for laser pulses with different length,
shape, amplitude, and frequency.
Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in
ps-format, submitted for publication to Physical Review A, WWW:
http://www.physik.tu-darmstadt.de/tqe
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
The generation of electron surface oscillations in overdense plasmas
irradiated at normal incidence by an intense laser pulse is investigated.
Two-dimensional (2D) particle-in-cell simulations show a transition from a
planar, electrostatic oscillation at , with the laser
frequency, to a 2D electromagnetic oscillation at frequency and
wavevector . A new electron parametric instability, involving the
decay of a 1D electrostatic oscillation into two surface waves, is introduced
to explain the basic features of the 2D oscillations. This effect leads to the
rippling of the plasma surface within a few laser cycles, and is likely to have
a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for
publication in Phys. Rev. Let
What do cMOOC participants talk about in Social Media? A Topic Analysis of Discourse in a cMOOC
Creating meaning from a wide variety of available information and being able to choose what to learn are highly relevant skills for learning in a connectivist setting. In this work, various approaches have been utilized to gain insights into learning processes occurring within a network of learners and understand the factors that shape learners ’ interests and the topics to which learners devote a significant attention. This study combines different methods to develop a scalable analytic approach for a comprehensive analysis of learners ’ discourse in a connectivist massive open online course (cMOOC). By linking techniques for semantic annotation and graph analysis with a qualitative analysis of learner-generated discourse, we examined how social media platforms (blogs, Twitter, and Facebook) and course recommendations influence content creation and topics discusse
- …