2,291 research outputs found

    Molecular dynamics as a tool to study heterogeneity in zeolites - Effect of Na cations on diffusion of CO and N in Na-ZSM-5

    Get PDF
    Zeolites typically contain extra-framework cations to charge-compensate for trivalent Al atom substitutions in the SiO framework. These cations, such as Na, directly interact with quadrupolar guest molecules, such as CO and N, which move through their micropores, causing energetic heterogeneity. To assess the effects of heterogeneity in Na-ZSM-5 on diffusion of CO and N, molecular dynamics (MD) simulations are carried out. In silicalite-1, the pure-silicon form of ZSM-5, the self-diffusivity exhibits a monotonic decrease with molecular loading, while the corrected diffusivity shows a relatively constant value. In contrast, the Na cations cause a maximum or a flat profile over molecular loading for the self- and corrected diffusivities of CO at T=200 and 300K, while the cations only have minimal impact on the diffusivity of N. The MD simulations allow us to identify energy basins or sites at which guest molecules spend a relatively long time, and construct a coarse-grained lattice representation for the pore network. Average residence times at these sites are calculated for both species. The trends observed in the residence times correlate to the trends observed in the diffusivity. The residence times for CO at T=200K are long at low loading, but decrease with loading as additional CO molecules compete to stay close to a cation. In contrast, the residence times for N are relatively insensitive to the cations, only mildly increasing near a cation. This difference in behavior can be associated to the quadrupole moments of these molecules

    Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery

    Get PDF
    Introduction: Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants.Areas covered: Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments.Expert opinion: The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed

    Testing for inherited thrombophilia does not reduce the recurrence of venous thrombosis\ud

    Get PDF
    Background: Inherited thrombophilia is only weakly associated with recurrence in patients with a first venous thrombosis (VT). In spite of this, thrombophilia testing is often performed in these patients. Positive results may influence patient management such as prolonged anticoagulant treatment or intensified prophylaxis in high-risk situations. Objective: To investigate whether thrombophilia testing reduces the risk of recurrent VT by virtue of these management alterations. Methods: From a large case–control study of patients (MEGA study), aged 18–70 years, with a first VT between 1999 and 2004, we selected 197 patients who had had a recurrence during follow-up. We compared the incidence of thrombophilia testing to that of a control cohort of 324 patients. We calculated the odds ratio (OR) for recurrent thrombosis in tested vs. non-tested patients. Only patients who were tested before recurrence were regarded as tested. All first and recurrent thrombotic events were objectively confirmed. Results: Thrombophilia tests were performed in 35% of cases and in 30% of controls. The OR for recurrence was 1.2 [95% confidence interval (CI) 0.9–1.8] for tested vs. non-tested patients. After correction for age, sex, family history, geographic region, presence of clinical risk factors, and year of first VT, the OR remained unchanged. Discussion: Thrombophilia testing in patients with a first VT does not reduce the incidence of recurrence in clinical practice.\u

    Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    Full text link
    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian transport in irregular geometries. Finally, we show that all these features can be qualitatively described in terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure

    Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure

    Get PDF
    Inefficient usage of expensive platinum catalyst has plagued the design of PEM fuel cells and contributed to the limited production and use of fuel cell systems. Here, it is shown that hierarchical optimization can increase platinum utilization 30-fold over existing catalyst layer designs while maintaining power densities over 0.35 W/cm2. The cathode catalyst layer microstructure is optimized with respect to platinum utilization (measured as kilowatts of electricity produced per gram of platinum). A one-dimensional agglomerate model that accounts for liquid water saturation is used in this study. The cathode catalyst layer microstructure is optimized by manipulating the platinum loading (m Pt), platinum-to-carbon ratio (Pt|C), and catalyst layer void fraction View the MathML source(εVcl). The resulting catalyst layer microstructure features ultra-low platinum loadings of roughly 0.01 mg/cm2

    The 2PI finite temperature effective potential of the O(N) linear sigma model in 1+1 dimensions, at next-to-leading order in 1/N

    Full text link
    We study the O(N) linear sigma model in 1+1 dimensions. We use the 2PI formalism of Cornwall, Jackiw and Tomboulis in order to evaluate the effective potential at finite temperature. At next-to-leading order in a 1/N expansion one has to include the sums over "necklace" and generalized "sunset" diagrams. We find that - in contrast to the Hartree approximation - there is no spontaneous symmetry breaking in this approximation, as to be expected for the exact theory. The effective potential becomes convex throughout for all parameter sets which include N=4,10,100, couplings lambda=0.1 and 0.5, and temperatures between 0.2 and 1. The Green's functions obtained by solving the Schwinger-Dyson equations are enhanced in the infrared region. We also compare the effective potential as function of the external field phi with those obtained in various other approximations.Comment: 19 pages, 9 figures; v2: references added, some changes in the tex
    corecore