42 research outputs found

    Analysis of electric field and emission spectrum in the glow discharge of therapeutic plasma electrode

    Get PDF
    Gas-filled glass plasma electrodes coupled with high-frequency high-voltage generators are used in medicine and dentistry for more than a century. In recent literature, therapeutic effects of such procedure have been explained through topical bio-oxidative effects of ozone generated by the dielectric barrier discharge. The aim of this study was to evaluate characteristics of electric field and optical emission spectrum generated in the treatment field by the glow discharge of the plasma electrode. Emission spectrum in red and near-infrared wavelength range (540–886 nm) and pulsed electric field (impulse frequency 1053 Hz, exponentially damped sine wave in the range of 33 kHz, duty cycle 20%) were recorded. Estimated electric field strength at 1-mm distance was in the range from 5.8 to 13.7 kV/m and between 106 and 108 V/m in the close proximity of electrode’s surface (below 0.01 mm). Recorded factors are integral constituents in the treatment field and their properties can be correlated to the known biological and therapeutic effects of photostimulation and electrostimulation. These factors present important bioactive components which could be responsible for therapeutic effects, reported in number of clinical studies, especially those which could not be explained through topical bio-oxidative effects of ozone

    Optimization of the electrode configuration of electrical impedance myography for wearable application

    Get PDF
    Electrical Impedance Myography (EIM) based on the four-electrode method is a novel method for assessing muscle state in the fields of sports, fitness, and medical rehabilitation. However, commonly used configuration of electrodes is not suitable for the wearable field, because of its large total area and low sensitivity. An optimized electrode configuration for wearable application is proposed as Mode B. Equivalent circuit model B of the four-electrode method is established by using the equivalent circuit of biological tissues, and in-vivo measurements of the electrical impedance of the biceps muscle are carried out on six volunteers using bioimpedance spectroscopy device ImpTM SFB7. The experimental results show that equivalent circuit model B of the four-electrode method is reliable. Moreover, the variation in muscle electrical impedance measured using the optimal configuration of model B is twice that measured using the optimal configuration of model A. The optimized electrode configuration of EIM based on this approach is model B (i.e. square electrodes in parallel array; size, 20 mm × 20 mm; spacing, 5–24 mm)

    Učinak bakra na toksičnost i genotoksičnost kadmija u vodenoj leći (Lemna minor L.)

    Get PDF
    We investigated interactions between copper (in the concentrations of 2.5 μmol L-1 and 5 μmol L-1) and cadmium (5 μmol L-1) in common duckweed (Lemna minor L.) by exposing it to either metal or to their combinations for four or seven days. Their uptake increased with time, but it was lower in plants treated with combinations of metals than in plants treated with either metal given alone. In separate treatments, either metal increased malondialdehyde (MDA) level and catalase and peroxidase activity. Both induced DNA damage, but copper did it only after 7 days of treatment. On day 4, the combination of cadmium and 5 μmol L-1 copper additionally increased MDA as well as catalase and peroxidase activity. In contrast, on day 7, MDA dropped in plants treated with combinations of metals, and especially with 2.5 μmol L-1 copper plus cadmium. In these plants, catalase activity was higher than in copper treated plants. Peroxidase activity increased after treatment with cadmium and 2.5 μmol L-1 copper but decreased in plants treated with cadmium and 5 μmol L-1 copper. Compared to copper alone, combinations of metals enhanced DNA damage after 4 days of treatment but it dropped on day 7. In conclusion, either metal given alone was toxic/genotoxic and caused oxidative stress. On day 4 of combined treatment, the higher copper concentration was more toxic than either metal alone. In contrast, on day 7 of combined treatment, the lower copper concentration showed lower oxidative and DNA damage. These complex interactions can not be explained by simple antagonism and/or synergism. Further studies should go in that direction.U svrhu istraživanja interakcija između bakra kao esencijalnog elementa te kadmija kao neesencijalnog i toksičnog metala, vodenu leću Lemna minor L. uzgajali smo na podlogama s kadmijem (5 μmol L-1) odnosno s bakrom (2,5 μmol L-1 i 5 μmol L-1) te s njihovim kombinacijama. Unos metala u biljke povećavao se s trajanjem pokusa, a kod kombinacije metala u biljkama je izmjerena niža količina kadmija nego u onima uzgajanima samo na kadmiju. U biljkama tretiranim pojedinačnim metalom došlo je do povećanja sadržaja malondialdehida (MDA) te aktivnosti katalaze i peroksidaze u odnosu na kontrolne biljke. Također, primijećeno je oštećenje DNA iako kod bakra tek sedmog dana tretmana. Količina MDA i aktivnost obaju enzima dodatno se povećala na tretmanu kombinacijom kadmija i bakra (5 μmol L-1) nakon četvrtog dana pokusa, dok se količina MDA smanjila nakon sedmog dana kod kombinacije kadmija i 2,5 μmol L-1 bakra. U tim biljkama primijećena je i veća aktivnost katalaze, dok je aktivnost peroksidaze porasla na tretmanu kadmijem i 2,5 μmol L-1 bakrom, ali se smanjila na tretmanu kadmijem i 5 μmol L-1 bakrom. Oštećenje DNA koje je bilo veće kod kombinacije metala nakon četvrtog dana, osobito u usporedbi sa samim bakrom, smanjilo se nakon sedmog dana pokusa. Iz ovih rezultata može se zaključiti da su oba metala u istraživanim koncentracijama toksična i genotoksična za vodenu leću i da uzrokuju oksidacijski stres. Kadmij u kombinaciji s bakrom više koncentracije bio je toksičniji od pojedinačnih metala nakon četvrtog dana pokusa, dok su u biljaka tretiranih kombinacijom kadmija i bakra niže koncentracije toksični učinci bili manji. Budući da su primijećene interakcije vrlo kompleksne i ne uključuju samo antagonizam odnosno sinergizam potrebna su daljnja istraživanja

    The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women

    Get PDF
    BACKGROUND: As the population of adults aged 65 and above is rapidly growing, it is crucial to identify physical and cognitive limitations pertaining to daily living. Cognitive fatigue has shown to adversely impact neuromuscular function in younger adults, however its impact on neuromuscular fatigue, and associated brain function changes, in older adults is not well understood. The aim of the study was to examine the impact of cognitive fatigue on neuromuscular fatigue and associated prefrontal cortex (PFC) activation patterns in older women. METHODS: Eleven older (75.82 (7.4) years) females attended two sessions and performed intermittent handgrip exercises at 30 % maximum voluntary contraction (MVC) until voluntary exhaustion after a 60-min control (watching documentary) and 60-min cognitive fatigue (performing Stroop Color Word and 1-Back tests) condition. Dependent measures included endurance time, strength loss, PFC activity (measured using fNIRS), force fluctuations, muscle activity, cardiovascular responses, and perceived discomfort. RESULTS: Participants perceived greater cognitive fatigue after the 60-min cognitive fatigue condition when compared to the control condition. While neuromuscular fatigue outcomes (i.e., endurance time, strength loss, perceived discomfort), force fluctuations, and muscle activity were similar across both the control and cognitive fatigue conditions, greater decrements in PFC activity during neuromuscular fatigue development after the cognitive fatigue condition were observed when compared to the control condition. CONCLUSION: Despite similar neuromuscular outcomes, cognitive fatigue was associated with blunted PFC activation during the handgrip fatiguing exercise that may be indicative of neural adaptation with aging in an effort to maintain motor performance. Examining the relationship between cognitive fatigue and neuromuscular output by imaging other motor-related brain regions are needed to provide a better understanding of age-related compensatory adaptations to perform daily tasks that involve some levels of cognitive demand and physical exercise, especially when older adults experience them sequentially

    Machine Vision and Applications DOI 10.1007/s00138-007-0068-0 ORIGINAL PAPER Calibration of 3D kinematic systems using orthogonality constraints

    No full text
    Abstract Processing images acquired by multi-camera systems is nowadays an effective and convenient way of performing 3D reconstruction. The basic output, i.e. the 3D location of points, can easily be further processed to also acquire information about additional kinematic data: velocity and acceleration. Hence, many such reconstruction systems are referred to as 3D kinematic systems and are very broadly used, among other tasks, for human motion analysis. A prerequisite for the actual reconstruction of the unknown points is the calibration of the multi-camera system. At present, many popular 3D kinematic systems offer so-called wand calibration, using a rigid bar with attached markers, which is from the end user’s point of view preferred over many traditional methods. During this work a brief criticism on different calibration strategies is given and typical calibration approaches for 3D kinematic systems are explained. In addition, alternative ways of calibration are proposed, especially for the initialization stage. More specifically, the proposed methods rely not only on the enforcement of known distances between markers, but also on the orthogonality of two or three rigidly linked wands. Besides, the proposed ideas utilize common present calibration tools and shorten the typical calibration procedure. The obtained reconstruction accuracy i

    Modeling Fatigue Effect in an EMG-Driven Hill Type Muscle Model during Dynamic Contractions

    No full text

    Differentiating patients with radiculopathy from chronic low back pain patients by single surface EMG parameter

    Get PDF
    The classification potential of surface electromyographic (EMG) parameters needs to be explored beyond classification of subjects onto low back pain subjects and control subjects. In this paper, a classification model based on surface EMG parameter is introduced to differentiate low back pain patients with radiculopathy from chronic low back pain (CLBP) patients and control subjects. A variant of the Roman chair was used to perform static contractions, where subject's own upper body weight was used to induce muscle fatigue in low back muscles. Surface EMG signals were recorded over the paraspinal muscles at L1–L2 and L4–L5 interspace level. As a descriptor of spectral changes, the median frequency of the power spectrum (MDF) was estimated by use of Hilbert–Huang transform. Student's t-test detected that regression line slope of the median frequency is significantly different (p < 0.05) only between low back pain patients with radiculopathy and other two groups. There was no significant difference between CLBP patients and control subjects. The achieved overall accuracy of the implemented decision tree classification model was at best 86.8%. The results suggest possibility of differentiating low back pain patients to subgroups depending on clinical symptoms

    A Rule Based Framework for Smart Training Using sEMG Signal

    No full text
    The correctness of the training during sport and fitness activities involving repetitive movements is often related to the capability of maintaining the required cadence and muscular force. Muscle fatigue may induce a failure in maintaining the needed force, and can be detected by a shift towards lower frequencies in the surface electromyography (sEMG) signal. The exercise repetition frequency and the evaluation of muscular fatigue can be simultaneously obtained by using just the sEMG signal through the application of a two-component AM-FM model based on the Hilbert transform. These two features can be used as inputs of an intelligent decision making system based on fuzzy rules for optimizing the training strategy. As an application example this system was set up using signals recorded with a wireless electromyograph applied to several healthy subjects performing dumbbell biceps curls
    corecore