148 research outputs found

    Detrital zircon from a late Paleozoic accretionary complex of SW Iberia (Variscan Belt): History of crustal growth and recycling at the Rheic convergent margin

    Get PDF
    In this study we present new U-Pb ages of detrital zircons from greywackes and quartzites of the Pulo do Lobo Anticline (PLA) that have been interpreted to represent a Late Paleozoic accretionary complex in SW Iberia. The PLA separates the Ossa Morena Zone, which has a North- Gondwana affinity throughout Late Ediacaran and Early Paleozoic times, from the South Portuguese Zone, which is considered to be underlain by Laurussia basement. The PLA stratigraphy most likely represents a synorogenic basin that records the closure of the Late Paleozoic Rheic Ocean and the amalgamation of Pangaea. The youngest formations of the PLA contain upper Devonian microfossils.The results obtained indicate that the detrital zircons from the PLA represent a wide range of Precambrian and Paleozoic crystallization ages. Recycling of older sedimentary units of the Late Ediacaran active margin (Cadomian/Pan-African orogenies) as well as of the Early Paleozoic rifting and passive margin (Rheic Ocean) stages, accounts for the older populations with North-Gondwana affinity (Cambrian, Neoproterozoic, Paleoproterozoic and Archean, with a gap of Mesoproterozoic-age). However, the Mesoproterozoic detrital zircon ages found in the greywackes of the Pulo do Lobo Formation (< 7%) that do not correspond to any substantial source within North-Gondwana, could come from recycled sedimentary deposits or from denudation of Grenville-age basement (Laurussia?). The more recent formations present in the northern limb (Ferreira-Ficalho Group) of the PLA show a significant age cluster in the upper Devonian (c. 378 Ma), whereas on the southern limb (Chança Group), samples have from base to top of the stratigraphic sequence: a minor age cluster in the middle Devonian (c. 390 Ma), a significant age cluster in upper Devonian (c. 380 Ma) and very significant age cluster in the upper Devonian (c. 372 Ma). The presence of middle-upper Devonian detrital zircons in combination with very low abundances of Mesoproterozoic detrital zircon suggests that the PLA sedimentary rocks were not derived from exotic sources but rather have a North-Gondwanan origin. The zircon population in the interval c. 390-380 Ma has no identified corresponding magmatic or stratigraphic source in SW Iberia. Considering that, during the development of the upper Devonian basins of SW Iberia, Laurussia basement was not exposed and that there was no magmatic arc on the North-Gondwana margin, we suggest that the c. 390- 380 Ma detrital zircons are most probably derived from denudation of a (intra-oceanic) magmatic arc related to the closure of the Rheic Ocean

    Comment on ‘‘Geodynamic evolution of the SW Europe

    Get PDF
    Ribeiro et al. [2007] have presented a geodynamic view of the SW Iberia Variscides based on data from Portugal. Their treatment of already published data is commendable, and the knowledge gained will surely encourage the discussion of the SWEurope Variscides. However, in our opinion, Ribeiro et al.’s modeling and interpretation of the Ediacaran–Lower Ordovician ( 560–470 Ma) geodynamic evolution are of limited value. In this regard, they based their analysis of the Ossa-Morena Zone (OMZ) on assumptions which are contradicted by recent published data. Ribeiro et al. ignored recent progress in the OMZ Ediacaran-Ordovician stratigraphy and, as a consequence they misunderstood the structure of domains overprinted by strong Variscan (Carboniferous) deformation and metamorphism

    The role of strain localization in magma injection into a transtensional shear zone (Variscan belt, SW Iberia).

    Get PDF
    This study deals with the interaction between deformation and magmatism in mid- to deep-crustal domains. The relation is analysed between migmatites and shear zones and the spatial distribution of leucogranitoid veins and dykes running through a footwall migmatite system, and reaching a transtensional shear zone operated under amphibolite- to greenschist-facies metamorphic conditions (Boa Fé shear zone, Variscan belt, SW Iberia). Statistical results show that the frequency of width and spacing of the leucogranitoid dykes conform to power-law distributions comparable with observations in volcanic systems. The fractal geometry of the distribution of leucogranitoid dykes highlights the development of a dense framework of thinner weakly or non-mineralized veins and dykes formed at higher nucleation/growth ratios in the footwall migmatite system that contrasts with the emplacement of thicker dykes associated with strongly mineralized thinner veins within the shear zone. The volume of injected leucogranitoid dykes in the shear zone is lower as compared with the footwall and is comparable with an expanding footwall shear zone with non-coaxial flow and volume increase. The Boa Fé shear zone seems to form a physical barrier to the transport of magma to the hanging wall

    Tectonothermal analysis of high-temperature mylonitization in the

    Get PDF
    Mylonites in pelitic and quartzofeldsphatic gneisses from the Ouguela tectonic unit (Coimbra–Córdoba shear zone, SW Iberian Massif) have been studied as an example of high-temperature ductile deformation associated with transcurrent tectonics. Detailed microstructural and P–T analysis indicates that ductile deformation evolved from a metamorphic peak at approximately 650–750 °C and 7.5–9.5 kbar (quartzofeldsphatic gneisses) and 730–790 °C and 7.5–9.5 kbar (pelitic gneisses) to retrograde conditions at 500–575 °C and 4.5/5.5–6.5/7.5 kbar (quartzofeldsphatic gneisses) and 525–600 °C and 3.5/4.5–5.5/7.5 kbar (pelitic gneisses). Following the metamorphic peak, exhumation was very fast. The P–T trajectory, which does not reach the curve for granite melting, is distinct that of isothermal decompression. Instead, the progressive and contemporaneous decrease in pressure and temperature was a direct response to strong heat dissipation along the contacts between the ascending slice and the adjacent blocks. The horizontal component of exhumation path, calculated for middle and shallower crustal levels, sum to ca. 57 km to 94 km (for the pressure peak). Assuming this offset acted in the Viséan during a time interval of ca. 9 Ma, the estimated exhumation horizontal slip rate is in the order of 6.3 to 10.4 mm/yr, which corresponds to an exhumation oblique-slip exhumation rate of 6.6 to 10.7 mm/yr (for ductile deformation). These values indicate that the transcurrent tectonic displacements accommodated by these mylonitic are similar to those of modern intra-continental shear zones, such as the still active Karakoram Fault (8.3 mm/yr) in the Himalayas. The Coimbra–Córdoba shear zone is therefore a typical intra-continental transcurrent zone with ten-to-one hundred kilometre along-strike mass movement of material that aided the exhumation of deep crustal rocks. Study of this large-scale structure in the SW Iberian Massif is therefore central to models of orogenic deformation during the amalgamation of Pangea

    Deciphering a multi-event in a non-complex set of detrital zircon U–Pb ages from Carboniferous graywackes of SW Iberia

    Get PDF
    The determination of U–Pb ages from detrital zircons of sedimentary rocks using LA-ICP-MS has been widely used for the purpose of provenance analysis. One problem that frequently arises is finding a population that appears to be non-complex despite several perceptible age peaks in its spectrum. These peaks are qualitatively defined by means of relative probability diagrams, or PDFs, but it is difficult to quantify their statistical significance relative to a zircon forming multi-event. Thus, can a multi-event in a non-complex set of detrital zircon U–Pb ages be deciphered and characterized? The aim of this study is to attempt to provide an answer to this question by means of statistical analysis. Its objectives are: a) to determine the best minimum number of zircon age populations (peaks), BmPs, b) for the characterization of each peak in terms of age and event duration; c) to compare the results obtained from two datasets showing similar zircon ages; and d) to demonstrate the usefulness of deciphering these BmPs. First, cluster analysis is carried out, aimed at grouping zircon ages into a set of consistent clusters. A Gaussian Kernel function is then fitted to each cluster and summed to obtain a theoretical PDFm (modeled probability density function). Finally, the selected modeled PDFm (that built on the BmPs) is that which reports the lowest number of peaks for which the difference as compared with the original gPDF (global probability density function) is equal to or below 5%. Deciphered BmP peaks can be characterized and used for characterizing and providing an understanding of related event(s). A geological interpretation, based on the results obtained, is attempted. This includes a robust measure for maximum age of deposition for both Cabrela and Mértola graywackes

    Zircon geochronology of intrusive rocks from Cap de Creus, eastern Pyrenees

    Get PDF
    New petrological and U–Pb zircon geochronological information has been obtained from intrusive plutonic rocks and migmatites from the Cap de Creus massif (Eastern Pyrenees) in order to constrain the timing of the thermal and tectonic evolution of this northeasternmost segment of Iberia during late Palaeozoic time. Zircons from a deformed syntectonic quartz diorite from the northern Cap de Creus Tudela migmatitic complex yield a mean age of 298.8±3.8 Ma. A syntectonic granodiorite from the Roses pluton in the southern area of lowest metamorphic grade of the massif has been dated at 290.8±2.9 Ma. All the analysed zircons from two samples of migmatitic rocks yield inherited ages from the Precambrian metasedimentary protolith (with two main age clusters at c. 730–542 Ma and c. 2.9–2.2 Ga). However, field structural relationships indicate that migmatization occurred synchronously with the emplacement of the quartz dioritic magmas at c. 299 Ma. Thus, the results of this study suggest that subduction-related calc-alkaline magmatic activity in the Cap de Creus was coeval and coupled with D2 dextral transpression involving NNW–SSE crustal shortening during Late Carboniferous – Early Permian time (c. 299–291 Ma). Since these age determinations are within the range of those obtained for undeformed (or slightly deformed) calc-alkaline igneous rocks from NE Iberia, it follows that the Cap de Creus massif would represent a zone of intense localization of D2 transpression and subsequent D3 ductile wrenching that extended into the Lower Permian during a transitional stage between the Variscan and Cimmerian cycles

    Inherited arc signature in Ediacaran and Early Cambrian basins of

    Get PDF
    Geochemical data from clastic rocks of the Ossa-Morena Zone (Iberian Massif) show that the main source for the Ediacaran and the Early Cambrian sediments was a recycled Cadomian magmatic arc along the northern Gondwana margin. The geodynamic scenario for this segment of the Avalonian-Cadomian active margin is considered in terms of three main stages: (1) The 570–540 Ma evolution of an active continental margin evolving oblique collision with accretion of oceanic crust, a continental magmatic arc and the development of related marginal basins; (2) the Ediacaran–Early Cambrian transition (540–520 Ma) coeval with important orogenic magmatism and the formation of transtensional basins with detritus derived from remnants of the magmatic arc; and (3) Gondwana fragmentation with the formation of Early Cambrian (520–510 Ma) shallow-water platforms in transtensional grabens accompanied by rift-related magmatism. These processes are comparable to similar Cadomian successions in other regions of Gondwanan Europe and Northwest Africa. Ediacaran and Early Cambrian basins preserved in the Ossa-Morena Zone (Portugal and Spain), the North Armorican Cadomian Belt (France), the Saxo-Thuringian Zone (Germany), the Western Meseta and the Western High-Atlas (Morocco) share a similar geotectonic evolution, probably situated in the same paleogeographic West African peri-Gondwanan region of the Avalonian-Cadomian active margin

    Zircon U–Pb geochronology of paragneisses and biotite

    Get PDF
    Sensitive high-resolution ion microprobe U–Th–Pb age determinations on detrital and inherited zircon from the E ´ vora Massif (SW Iberian Massif, Portugal) provide direct evidence for the provenance of the Ossa–Morena Ediacaran basins (Se´rie Negra) and a palaeogeographical link with the West African craton. Three samples of the Se´rie Negra paragneisses contain large components of Cryogenian and Ediacaran (c. 700–540 Ma) detrital zircon, but have a marked lack of zircon of Mesoproterozoic (c. 1.8–0.9 Ga) age. Older inherited zircons are of Palaeoproterozoic (c. 2.4–1.8 Ga) and Archaean (c. 3.5–2.5 Ga) age. The same age pattern is also found in the Arraiolos biotite granite, which was formed by partial melting of the Se´rie Negra and overlying Cambrian rocks. These results are consistent with substantial denudation of a continental region that supplied sediments to the Ediacaran Ossa–Morena basins during the final stages of the Cadomian–Avalonian orogeny (peri-Gondwanan margin with principal zircon-forming events at c. 575 Ma and c. 615 Ma). Combined with the detrital zircon ages reported for rocks of the same age from Portugal, Spain, Germany and Algeria, our data suggest that the sediment supply to the Ediacaran–Early Palaeozoic siliciclastic sequences preserved in all these peri- Gondwanan regions was similar. The lack of Grenvillian-aged (c. 1.1–0.9 Ga) zircon in the Ossa–Morena and Saxo-Thuringia Ediacaran sediments suggests that the sediment in these peri-Gondwanan basins was derived from the West African craton

    Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal)

    Get PDF
    The Variscan belt of Western and Central Europe was formed by the oblique subduction of the Rheic Ocean and the collision of Laurussia with Gondwana during the Late Palaeozoic. We present field relationships and new U–Pb LA-ICP-MS zircon and monazite ages for Variscan gneisses and granites from a key section of the western Iberian Massif. The Martinchel section records the interplay of two kilometre-scale Variscan transcurrent shear zones active in the Gondwana basement of Pangaea: the Porto–Tomar fault zone (PTFZ) and the Coimbra–Córdoba shear zone (CCSZ). Different kinematic models have been invoked to explain the formation and evolution of these major Variscan structures mainly based on assumptions made in the absence of reliable radiometric ages. We show that: (1) ductile deformation and metamorphism were active in the CCSZ during the Visean–Serpukhovian (c.335–318 Ma) and created conditions for amphibolite facies metamorphism and coeval emplacement of granites; and (2) later ductile–brittle deformation related to dextral movements along the PTFZ overprinted the earlier foliation and folds derived from the CCSZ deformation, and deformed the previously intruded granites. U–Pb dating of zircon and monazites yield c.335 Ma ages for the ductile deformation developed under amphibolite facies metamorphic conditions in the Martinchel gneisses of the CCSZ. The gneisses were intruded by granites at c.335–318 Ma, and both were later deformed under ductile–brittle conditions by dextral motion on the PTFZ. The geometry of the Martinchel gneisses (typical of the CCSZ) changed from one of thrusting to one of normal faulting by refolding of the early foliation, stretching lineation and asymmetric structures related to the later PTFZ dextral shear episode. This pattern of interference is not fully considered in previous models and may lead to incorrect tectonic interpretations. According to our data and recently published ages, we suggest that the PTFZ was active after the Serpukhovian–Kasimovian since the c.318–308 Ma granites are deformed by north–south (170°) dextral shear planes. These data are critical to the interpretation of large-scale Carboniferous transcurrent displacements in northern Gondwana (Iberian Massif), and bear upon global models of crustal deformation that emphasize the importance of long-lived dextral movements during the collision between northern Gondwana and Laurussia following the closure of the Rheic Ocean

    Exhumation of high-pressure rocks in northern Gondwana during the Early

    Get PDF
    The Coimbra–Córdoba shear zone (CCSZ) represents a major intra-continental shear zone of the European Variscan orogen. The shear criteria found in metamorphic rocks of the CCSZ are consistent with sinistral transcurrent movements. Isoclinal and open folds with axes parallel to the stretching lineation are responsible for dip variations in the mylonitic foliation, but are related to the same kinematics. In selected outcrops of the Campo Maior unit (SW Iberian Massif, Portugal), boudins of high-pressure mafic granulites, high-grade amphibolites and felsic gneisses with long-axes parallel to the stretching lineation in the surrounded metamorphic rocks, were sampled together with the host migmatites for petrographic, geothermobarometric and U–Th–Pb SHRIMP in-situ zircon geochronology analysis. The results show that decompression associated with shearing and partial melting in the CCSZ began under granulite facies conditions during the Variscan orogeny (early Carboniferous: c. 340 Ma.). Peak metamorphic conditions in the mafic granulites (850–880 °C and 14.5–16.5 kbar), were followed by symplectitization at 725–750 °C and 12.5–14.5 kbar. Peak P–T conditions were 615–675 °C and 9.5–11.5 kbar in the high-grade amphibolites, 750–850 °C and 11.5–15.5 kbar in the weakly deformed gneisses, and 675–725 °C and 9–11.5 kbar in the sheared migmatites. Subsequently, temperatures and pressures decreased during amphibolite facies metamorphism coeval with mylonitization. Retrograde P–T conditions were 550–700 °C and 7–9 kbar in the high-grade amphibolite, 620–640 °C and 6–8 kbar in the gneisses, and 560–610 °C and 5–6.5 kbar in the migmatites. Zircon dating of the migmatites and gneisses indicate Ediacaran (c. 590 Ma) and Ordovician (c. 488–479 Ma) ages for the protoliths, and show that these rocks were part of the northern Gondwana margin with a West Africa Craton signature dominated by Paleoproterozoic (c. 2–1.8 Ga) and Neoproterozoic (c. 664–555 Ma) ages, and a characteristic lack of Mesoproterozoic (c. 0.9–1.7 Ga) ages. These rocks were probably subducted, and subsequently exhumed during the complex processes of Pangea formation. The high temperature–high pressure rocks of the Campo Maior unit were likely displaced by large-scale transcurrent movements within the CCSZ in the early Carboniferous. The CCSZ appears to represent a major shear zone in the SW Iberian Massif connected in some way to the Variscan suture zon
    • …
    corecore