371 research outputs found

    Heisenberg XXZ Model and Quantum Galilei Group

    Full text link
    The 1D Heisenberg spin chain with anisotropy of the XXZ type is analyzed in terms of the symmetry given by the quantum Galilei group Gamma_q(1). We show that the magnon excitations and the s=1/2, n-magnon bound states are determined by the algebra. Thus the Gamma_q(1) symmetry provides a description that naturally induces the Bethe Ansatz. The recurrence relations determined by Gamma_q(1) permit to express the energy of the n-magnon bound states in a closed form in terms of Tchebischeff polynomials.Comment: (pag. 10

    Inomogeneous Quantum Groups as Symmetries of Phonons

    Full text link
    The quantum deformed (1+1) Poincare' algebra is shown to be the kinematical symmetry of the harmonic chain, whose spacing is given by the deformation parameter. Phonons with their symmetries as well as multiphonon processes are derived from the quantum group structure. Inhomogeneous quantum groups are thus proposed as kinematical invariance of discrete systems.Comment: 5 pags. 0 fig

    Bases in Lie and Quantum Algebras

    Full text link
    Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su_q(2).Comment: 16 pages, Proceedings of the 5th International Symposium on Quantum Theory and Symmetries QTS5 (July 22-28, 2007, Valladolid (Spain)

    Identical Particles and Permutation Group

    Full text link
    Second quantization is revisited and creation and annihilation operators areshown to be related, on the same footing both to the algebra h(1), and to the superalgebra osp(1|2) that are shown to be both compatible with Bose and Fermi statistics. The two algebras are completely equivalent in the one-mode sector but, because of grading of osp(1|2), differ in the many-particle case. The same scheme is straightforwardly extended to the quantum case h_q(1) and osp_q(1|2).Comment: 8 pages, standard TEX, DFF 205/5/94 Firenz
    • …
    corecore