2,130 research outputs found
Block synchronization for quantum information
Locating the boundaries of consecutive blocks of quantum information is a
fundamental building block for advanced quantum computation and quantum
communication systems. We develop a coding theoretic method for properly
locating boundaries of quantum information without relying on external
synchronization when block synchronization is lost. The method also protects
qubits from decoherence in a manner similar to conventional quantum
error-correcting codes, seamlessly achieving synchronization recovery and error
correction. A family of quantum codes that are simultaneously synchronizable
and error-correcting is given through this approach.Comment: 7 pages, no figures, final accepted version for publication in
Physical Review
Predicting the temporal activity patterns of new venues.
Estimating revenue and business demand of a newly opened venue is paramount
as these early stages often involve critical decisions such as first rounds of staffing
and resource allocation. Traditionally, this estimation has been performed through
coarse-grained measures such as observing numbers in local venues or venues at
similar places (e.g., coffee shops around another station in the same city). The
advent of crowdsourced data from devices and services carried by individuals on a
daily basis has opened up the possibility of performing better predictions of
temporal visitation patterns for locations and venues. In this paper, using mobility
data from Foursquare, a location-centric platform, we treat venue categories as
proxies for urban activities and analyze how they become popular over time. The
main contribution of this work is a prediction framework able to use characteristic
temporal signatures of places together with k-nearest neighbor metrics capturing
similarities among urban regions, to forecast weekly popularity dynamics of a new
venue establishment in a city neighborhood. We further show how we are able to
forecast the popularity of the new venue after one month following its opening by
using locality and temporal similarity as features. For the evaluation of our
approach we focus on London. We show that temporally similar areas of the city
can be successfully used as inputs of predictions of the visit patterns of new
venues, with an improvement of 41% compared to a random selection of wards as
a training set for the prediction task. We apply these concepts of temporally
similar areas and locality to the real-time predictions related to new venues and
show that these features can effectively be used to predict the future trends of a
venue. Our findings have the potential to impact the design of location-based
technologies and decisions made by new business owners
Predicting the temporal activity patterns of new venues
Estimating revenue and business demand of a newly opened venue is paramount as these early stages often involve critical decisions such as first rounds of staffing and resource allocation. Traditionally, this estimation has been performed through coarse-grained measures such as observing numbers in local venues or venues at similar places (e.g., coffee shops around another station in the same city). The advent of crowdsourced data from devices and services carried by individuals on a daily basis has opened up the possibility of performing better predictions of temporal visitation patterns for locations and venues. In this paper, using mobility data from Foursquare, a location-centric platform, we treat venue categories as proxies for urban activities and analyze how they become popular over time. The main contribution of this work is a prediction framework able to use characteristic temporal signatures of places together with k-nearest neighbor metrics capturing similarities among urban regions, to forecast weekly popularity dynamics of a new venue establishment in a city neighborhood. We further show how we are able to forecast the popularity of the new venue after one month following its opening by using locality and temporal similarity as features. For the evaluation of our approach we focus on London. We show that temporally similar areas of the city can be successfully used as inputs of predictions of the visit patterns of new venues, with an improvement of 41% compared to a random selection of wards as a training set for the prediction task. We apply these concepts of temporally similar areas and locality to the real-time predictions related to new venues and show that these features can effectively be used to predict the future trends of a venue. Our findings have the potential to impact the design of location-based technologies and decisions made by new business owners
Balance Assessment Using a Smartwatch Inertial Measurement Unit with Principal Component Analysis for Anatomical Calibration
Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch IMU were tested against a strictly placed IMU after using a functional calibration method. The smartwatch and strictly placed IMUs were strongly correlated in clinically relevant posturography scores (r = 0.861â0.970, p \u3c 0.001). Additionally, the smartwatch was able to detect significant variance (p \u3c 0.001) between pose-type scores from the mediolateral (ML) acceleration data and anterior-posterior (AP) rotation data. With this calibration method, a large problem with inertial-based posturography has been addressed, and wearable, âat-homeâ balance-assessment technology is within possibility
Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy
The transient response of bedrock rivers to a drop in base level can be used to
discriminate between competing fluvial erosion models. However, some recent studies of
bedrock erosion conclude that transient river long profiles can be approximately
characterized by a transportâlimited erosion model, while other authors suggest that a
detachmentâlimited model best explains their field data. The difference is thought to be
due to the relative volume of sediment being fluxed through the fluvial system. Using a
pragmatic approach, we address this debate by testing the ability of endâmember fluvial
erosion models to reproduce the wellâdocumented evolution of three catchments in the
central Apennines (Italy) which have been perturbed to various extents by an
independently constrained increase in relative uplift rate. The transportâlimited model is
unable to account for the catchmentsâresponse to the increase in uplift rate, consistent with
the observed low rates of sediment supply to the channels. Instead, a detachmentâlimited
model with a threshold corresponding to the fieldâderived median grain size of the
sediment plus a slopeâdependent channel width satisfactorily reproduces the overall
convex long profiles along the studied rivers. Importantly, we find that the prefactor in the
hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster
the higher the uplift rate, consistent with field observations. We conclude that a slopeâ
dependent channel width and an entrainment/erosion threshold are necessary ingredients
when modeling landscape evolution or mapping the distribution of fluvial erosion rates in
areas where the rate of sediment supply to channels is low
An Alternative Interpretation of Statistical Mechanics
In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests interesting possibilities for developing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational questions of statistical mechanics
Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient
Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P) movement and availability along a forest-marsh gradient in an Everglades tree island. Our study illustrated processes that are consistent with the chemohydrodynamic nutrient (CHNT) hypothesis and the trigger-transfer, pulse-reserve (TTPR) model developed for semiarid systems. Comparison with the TTPR model was constructive as it elaborated several significant patterns and processes of the tree island ecosystem including: (1) concentration of the limiting resource (P) in the source patch (High Head which constitutes the reserve) compared with the resource-poor landscape, (2) soil zone calcite precipitation requiring strong seasonality for evapotranspiration to promote conditions for secondary soil development and calcium phosphate reprecipitation, (3) rewetting of previously dry soils by early wet season precipitation events, and (4) antecedent conditions of the source patch, including landscape position that modulated the effect of the precipitation trigger. Thus, our study showed how water availability drives soil water P dynamics and, potentially, stability of mineral soil P in this tree island ecosystem. In landscapes with extensive water management, these processes can be asynchronous with the seasonality of hydrologic dynamics, tipping the balance between a sink and source of a limiting nutrient
Design of coupling for synchronization in time-delayed systems
We report a design of delay coupling for targeting desired synchronization in
delay dynamical systems. We target synchronization, antisynchronization, lag-,
antilag- synchronization, amplitude death (or oscillation death) and
generalized synchronization in mismatched oscillators. A scaling of the size of
an attractor is made possible in different synchronization regimes. We realize
a type of mixed synchronization where synchronization, antisynchronization
coexist in different pairs of state variables of the coupled system. We
establish the stability condition of synchronization using the
Krasovskii-Lyapunov function theory and the Hurwitz matrix criterion. We
present numerical examples using the Mackey-Glass system and a delay
R\"{o}ssler system.Comment: 8 pages, 6 figures; Chaos 22 (2012
Vibrotactile pedals : provision of haptic feedback to support economical driving
The use of haptic feedback is currently an underused modality in the driving environment, especially with respect to vehicle manufacturers. This exploratory study evaluates the effects of a vibrotactile (or haptic) accelerator pedal on car driving performance and perceived workload using a driving simulator. A stimulus was triggered when the driver exceeded a 50% throttle threshold, past which is deemed excessive for economical driving. Results showed significant decreases in mean acceleration values, and maximum and excess throttle use when the haptic pedal was active as compared to a baseline condition. As well as the positive changes to driver behaviour, subjective workload decreased when driving with the haptic pedal as compared to when drivers were simply asked to drive economically. The literature suggests that the haptic processing channel offers a largely untapped resource in the driving environment, and could provide information without overloading the other attentional resource pools used in driving
Background-Independence
Intuitively speaking, a classical field theory is background-independent if
the structure required to make sense of its equations is itself subject to
dynamical evolution, rather than being imposed ab initio. The aim of this paper
is to provide an explication of this intuitive notion. Background-independence
is not a not formal property of theories: the question whether a theory is
background-independent depends upon how the theory is interpreted. Under the
approach proposed here, a theory is fully background-independent relative to an
interpretation if each physical possibility corresponds to a distinct spacetime
geometry; and it falls short of full background-independence to the extent that
this condition fails.Comment: Forthcoming in General Relativity and Gravitatio
- âŠ