843 research outputs found
Symmetry breaking perturbations and strange attractors
The asymmetrically forced, damped Duffing oscillator is introduced as a
prototype model for analyzing the homoclinic tangle of symmetric dissipative
systems with \textit{symmetry breaking} disturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic
behavior of the system, e.g. transitions from two sided to one sided strange
attractors as the other parameters are varied. Moreover, slight asymmetries may
cause substantial asymmetries in the relative size of the basins of attraction
of the unforced nearly symmetric attracting regions. These changes seems to be
associated with homoclinic bifurcations. Numerical evidence indicates that
\textit{strange attractors} appear near curves corresponding to specific
secondary homoclinic bifurcations. These curves are found using analytical
perturbational tools
Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape
Lobe dynamics and escape from a potential well are general frameworks
introduced to study phase space transport in chaotic dynamical systems. While
the former approach studies how regions of phase space are transported by
reducing the flow to a two-dimensional map, the latter approach studies the
phase space structures that lead to critical events by crossing periodic orbit
around saddles. Both of these frameworks require computation with curves
represented by millions of points-computing intersection points between these
curves and area bounded by the segments of these curves-for quantifying the
transport and escape rate. We present a theory for computing these intersection
points and the area bounded between the segments of these curves based on a
classification of the intersection points using equivalence class. We also
present an alternate theory for curves with nontransverse intersections and a
method to increase the density of points on the curves for locating the
intersection points accurately.The numerical implementation of the theory
presented herein is available as an open source software called Lober. We used
this package to demonstrate the application of the theory to lobe dynamics that
arises in fluid mechanics, and rate of escape from a potential well that arises
in ship dynamics.Comment: 33 pages, 17 figure
NASA space station automation: AI-based technology review. Executive summary
Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics
Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments
The proper subcellular localization of RNAs and local translational regulation is crucial in highly compartmentalized cells, such as neurons. RNA localization is mediated by specific cis-regulatory elements usually found in mRNA 3'UTRs. Therefore, processes that generate alternative 3'UTRs-alternative splicing and polyadenylation-have the potential to diversify mRNA localization patterns in neurons. Here, we performed mapping of alternative 3'UTRs in neurites and soma isolated from mESC-derived neurons. Our analysis identified 593 genes with differentially localized 3'UTR isoforms. In particular, we have shown that two isoforms of Cdc42 gene with distinct functions in neuronal polarity are differentially localized between neurites and soma of mESC-derived and mouse primary cortical neurons, at both mRNA and protein level. Using reporter assays and 3'UTR swapping experiments, we have identified the role of alternative 3'UTRs and mRNA transport in differential localization of alternative CDC42 protein isoforms. Moreover, we used SILAC to identify isoform-specific Cdc42 3'UTR-bound proteome with potential role in Cdc42 localization and translation. Our analysis points to usage of alternative 3'UTR isoforms as a novel mechanism to provide for differential localization of functionally diverse alternative protein isoforms
Domain Walls and the Creation of Strings
The phenomenon of creation of strings, occurring when particles pass through
a domain wall and related to the Hanany-Witten effect via dualities, is
discussed in ten and nine dimensions. We consider both the particle actions in
massive backgrounds as well as the 1/4-supersymmetric particle-string-domain
wall supergravity solutions and discuss their physical interpretation. In 10D
we discuss the D0-F1-D8 system in massive IIA theory while in 9D the
SL(2,R)-generalisation is constructed. It consists of (p,q)-particles,
(r,s)-strings and the double domain wall solution of the three different 9D
gauged supergravities where a subgroup of SL(2,R) is gauged.Comment: v1: 22 pages, 3 figures. v2: footnote and reference adde
Camparison of the Hanbury Brown-Twiss effect for bosons and fermions
Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in
light emitted by a chaotic source, highlighting the importance of two-photon
correlations and stimulating the development of modern quantum optics . The
quantum interpretation of bunching relies upon the constructive interference
between amplitudes involving two indistinguishable photons, and its additive
character is intimately linked to the Bose nature of photons. Advances in atom
cooling and detection have led to the observation and full characterisation of
the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions
should reveal an antibunching effect, i.e., a tendency to avoid each other.
Antibunching of fermions is associated with destructive two-particle
interference and is related to the Pauli principle forbidding more than one
identical fermion to occupy the same quantum state. Here we report an
experimental comparison of the fermion and the boson HBT effects realised in
the same apparatus with two different isotopes of helium, 3He (a fermion) and
4He (a boson). Ordinary attractive or repulsive interactions between atoms are
negligible, and the contrasting bunching and antibunching behaviours can be
fully attributed to the different quantum statistics. Our result shows how
atom-atom correlation measurements can be used not only for revealing details
in the spatial density, or momentum correlations in an atomic ensemble, but
also to directly observe phase effects linked to the quantum statistics in a
many body system. It may thus find applications to study more exotic situations
>.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio
An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling
The Hubbard model, containing only the minimum ingredients of nearest
neighbor hopping and on-site interaction for correlated electrons, has
succeeded in accounting for diverse phenomena observed in solid-state
materials. One of the interesting extensions is to enlarge its spin symmetry to
SU(N>2), which is closely related to systems with orbital degeneracy. Here we
report a successful formation of the SU(6) symmetric Mott insulator state with
an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical
lattice. Besides the suppression of compressibility and the existence of charge
excitation gap which characterize a Mott insulating phase, we reveal an
important difference between the cases of SU(6) and SU(2) in the achievable
temperature as the consequence of different entropy carried by an isolated
spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful
for investigating exotic quantum phases of SU(N) Hubbard system at extremely
low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic
Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates
We present a theory of the density correlations that appear in an atomic
Bose-Einstein condensate as a consequence of the dynamical Casimir emission of
pairs of Bogoliubov phonons when the atom-atom scattering length is modulated
in time. Different regimes as a function of the temporal shape of the
modulation are identified and a simple physical picture of the phenomenon is
discussed. Analytical expressions for the density correlation function are
provided for the most significant limiting cases. This theory is able to
explain some unexpected features recently observed in numerical calculations of
Hawking radiation from analog black holes
- …