1,475 research outputs found

    Quantum magneto-optics of graphite family

    Full text link
    The optical conductivity of graphene, bilayer graphene, and graphite in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall's, are analytically evaluated. The conductivity peaks are explained in terms of electron transitions. We have shown that trigonal warping can be considered within the perturbation theory for strong magnetic fields larger than 1 T and in the semiclassical approach for weak fields when the Fermi energy is much larger than the cyclotron frequency. The main optical transitions obey the selection rule with \Deltan = 1 for the Landau number n, however the \Deltan = 2 transitions due to the trigonal warping are also possible. The Faraday/Kerr rotation and light transmission/reflection in the quantizing magnetic fields are calculated. Parameters of the Slonczewski-Weiss-McClure model are used in the fit taking into account the previous dHvA measurements and correcting some of them for the case of strong magnetic fields.Comment: 28 pages, 12 figures. arXiv admin note: text overlap with arXiv:1106.340

    Inverse Association between trans Isomeric and Long-Chain Polyunsaturated Fatty Acids in Pregnant Women and Their Newborns: Data from Three European Countries

    Get PDF
    Background: trans unsaturated fatty acids are thought to interfere with essential fatty acid metabolism. To extend our knowledge of this phenomenon, we investigated the relationship between trans isomeric and long-chain polyunsaturated fatty acids (LCPUFA) in mothers during pregnancy and in their infants at birth. Methods: Fatty acid composition of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was determined in Spanish (n = 120), German (n = 78) and Hungarian (n = 43) women at the 20th and 30th week of gestation, at delivery and in their newborns. Results: At the 20th week of gestation, the sum of trans fatty acids in PE was significantly (p < 0.01) lower in Hungarian [0.73 (0.51), % wt/wt, median (IQR)] than in Spanish [1.42 (1.36)] and German [1.30 (1.21)] women. Docosahexaenoic acid (DHA) values in PE were significantly (p < 0.01) higher in Hungarian {[}5.65 (2.09)] than in Spanish [4.37 (2.60)] or German [4.39 (3.3.2)] women. The sum of trans fatty acids significantly inversely correlated to DHA in PCs in Spanish (r = -0.37, p < 0.001), German (n = -0.77, p < 0.001) and Hungarian (r = -0.35, p < 0.05) women, and in PEs in Spanish (r = -0.67, p < 0.001) and German (r = -0.71, p < 0.001), but not in Hungarian (r = -0.02) women. Significant inverse correlations were seen between trans fatty acids and DHA in PEs at the 30th week of gestation (n = 241, r = -0.52, p < 0.001), at delivery (n = 241, r = -0.40, p < 0.001) and in cord lipids (n = 218, r = -0.28, p < 0.001). Conclusion: Because humans cannot synthesize trans isomeric fatty acids, the data obtained in the present study support the concept that high maternal trans isomeric fatty acid intake may interfere with the availability of LCPUFA both for the mother and the fetus. Copyright (C) 2011 S. Karger AG, Base

    Magnetic resonance imaging findings in bipartite medial cuneiform – a potential pitfall in diagnosis of midfoot injuries: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The bipartite medial cuneiform is an uncommon developmental osseous variant in the midfoot. To our knowledge, Magnetic Resonance Imaging (MRI) characteristics of a non-symptomatic bipartite medial cuneiform have not been described in the orthopaedic literature. It is important for orthopaedic foot and ankle surgeons, musculoskeletal radiologists, and for podiatrists to identify this osseous variant as it may be mistakenly diagnosed as a fracture or not recognized as a source of non-traumatic or traumatic foot pain, which may sometimes even require surgical treatment.</p> <p>Case presentations</p> <p>In this report, we describe the characteristics of three cases of bipartite medial cuneiform on Magnetic Resonance Imaging and contrast its appearance to that of a medial cuneiform fracture.</p> <p>Conclusion</p> <p>A bipartite medial cuneiform is a rare developmental anomaly of the midfoot and may be the source of midfoot pain. Knowledge about its characteristic appearance on magnetic resonance imaging is important because it is a potential pitfall in diagnosis of midfoot injuries.</p

    Effect of Layer-Stacking on the Electronic Structure of Graphene Nanoribbons

    Full text link
    The evolution of electronic structure of graphene nanoribbons (GNRs) as a function of the number of layers stacked together is investigated using \textit{ab initio} density functional theory (DFT) including interlayer van der Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer AGNRs, exhibit three classes of band gaps depending on their width. In zigzag GNRs (ZGNRs), the geometry relaxation resulting from interlayer interactions plays a crucial role in determining the magnetic polarization and the band structure. The antiferromagnetic (AF) interlayer coupling is more stable compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF in-layer and AF interlayer coupling have a finite band gap while ZGNRs with the FM in-layer and AF interlayer coupling do not have a band gap. The ground state of the bi-layer ZGNR is non-magnetic with a small but finite band gap. The magnetic ordering is less stable in multilayer ZGNRs compared to single-layer ZGNRs. The quasipartcle GW corrections are smaller for bilayer GNRs compared to single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs compared to single-layer GNRs.Comment: 10 pages, 5 figure

    Gender and sexual orientation differences in cognition across adulthood : age is kinder to women than to men regardless of sexual orientation

    Get PDF
    Despite some evidence of greater age-related deterioration of the brain in males than in females, gender differences in rates of cognitive aging have proved inconsistent. The present study employed web-based methodology to collect data from people aged 20-65 years (109,612 men; 88,509 women). As expected, men outperformed women on tests of mental rotation and line angle judgment, whereas women outperformed men on tests of category fluency and object location memory. Performance on all tests declined with age but significantly more so for men than for women. Heterosexuals of each gender generally outperformed bisexuals and homosexuals on tests where that gender was superior; however, there were no clear interactions between age and sexual orientation for either gender. At least for these particular tests from young adulthood to retirement, age is kinder to women than to men, but treats heterosexuals, bisexuals, and homosexuals just the same

    Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics

    Get PDF
    The simulation of low-temperature properties of many-body systems remains one of the major challenges in theoretical and experimental quantum information science. We present, and demonstrate experimentally, a universal cooling method which is applicable to any physical system that can be simulated by a quantum computer. This method allows us to distill and eliminate hot components of quantum states, i.e., a quantum Maxwell's demon. The experimental implementation is realized with a quantum-optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). These results open a new path for simulating low-temperature properties of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material

    A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers

    Full text link
    We consider the transmission of massless Dirac fermions through an array of short range scatterers which are modeled as randomly positioned δ\delta- function like potentials along the x-axis. We particularly discuss the interplay between disorder-induced localization that is the hallmark of a non-relativistic system and two important properties of such massless Dirac fermions, namely, complete transmission at normal incidence and periodic dependence of transmission coefficient on the strength of the barrier that leads to a periodic resonant transmission. This leads to two different types of conductance behavior as a function of the system size at the resonant and the off-resonance strengths of the delta function potential. We explain this behavior of the conductance in terms of the transmission through a pair of such barriers using a Green's function based approach. The method helps to understand such disordered transport in terms of well known optical phenomena such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur
    corecore