4,267 research outputs found
Degenerate fermion gas heating by hole creation
Loss processes that remove particles from an atom trap leave holes behind in
the single particle distribution if the trapped gas is a degenerate fermion
system. The appearance of holes increases the temperature and we show that the
heating is (i) significant if the initial temperature is well below the Fermi
temperature , and (ii) increases the temperature to
after half of the system's lifetime, regardless of the initial temperature. The
hole heating has important consequences for the prospect of observing
Cooper-pairing in atom traps.Comment: to be published in PR
Schiff Theorem and the Electric Dipole Moments of Hydrogen-Like Atoms
The Schiff theorem is revisited in this work and the residual - and
-odd electron--nucleus interaction, after the shielding takes effect, is
completely specified. An application is made to the electric dipole moments of
hydrogen-like atoms, whose qualitative features and systematics have important
implication for realistic paramagnetic atoms.Comment: 3 pages. Contribution to PANIC05, Particles and Nuclei International
Conference, Santa Fe, New Mexico, Oct. 24-28, 200
Effective interaction between molecules in the BEC regime of a superfluid Fermi gas
We investigate the effective interaction between Cooper-pair molecules in the
st rong-coupling BEC regime of a superfluid Fermi gas with a Feshbach
resonance. Our work uses a path integral formulation and a renormalization
group (RG) analy sis of fluctuations in a single-channel model. We show that a
physical cutoff en ergy originating from the finite molecular
binding energy is the key to understanding the interaction between molecules in
the BEC regime. Our work t hus clarifies recent results by showing that is a {\it ba re} molecular scattering length while is the low energy molecular scattering length
renormalized to include high-energy scat tering up to (here is the scattering length between Fermi atoms). We also include many-body
effects at finite temperatures. We find that is strongly dependent
on temperature, vanishing at , consistent with the earlier Bose gas
results of Bijlsma and Stoof.Comment: 10 pages, 3 figure
Cosmic rays studied with a hybrid high school detector array
The LORUN/NAHSA system is a pathfinder for hybrid cosmic ray research
combined with education and outreach in the field of astro-particle physics.
Particle detectors and radio antennae were mainly setup by students and placed
on public buildings. After fully digital data acquisition, coincidence
detections were selected. Three candidate events confirmed a working prototype,
which can be multiplied to extend further particle detector arrays on high
schools.Comment: 10 pages, 6 figures. Nigl, A., Timmermans, C., Schellart, P.,
Kuijpers, J., Falcke, H., Horneffer, A., de Vos, C. M., Koopman, Y., Pepping,
H. J., Schoonderbeek, G., Cosmic rays studied with a hybrid high school
detector array, Europhysics News (EPN), Vol. 38, No. 5, accepted on
22/08/200
Chiral two-pion exchange and proton-proton partial-wave analysis
The chiral two-pion exchange component of the long-range pp interaction is
studied in an energy-dependent partial-wave analysis. We demonstrate its
presence and importance, and determine the chiral parameters c_i (i=1,3,4). The
values agree well with those obtained from pion-nucleon amplitudes.Comment: 13 pages, no figure
Performance of a GridPix detector based on the Timepix3 chip
A GridPix readout for a TPC based on the Timepix3 chip is developed for
future applications at a linear collider. The GridPix detector consists of a
gaseous drift volume read out by a single Timepix3 chip with an integrated
amplification grid. Its performance is studied in a test beam with 2.5 GeV
electrons. The GridPix detector detects single ionization electrons with high
efficiency. The Timepix3 chip allowed for high sample rates and time walk
corrections. Diffusion is found to be the dominating error on the track
position measurement both in the pixel plane and in the drift direction, and
systematic distortions in the pixel plane are below 10 m. Using a
truncated sum, an energy loss (dE/dx) resolution of 4.1% is found for an
effective track length of 1 m.Comment: To be published in Nuclear Instruments and Methods in Physics
Research Section
Atomic Electric Dipole Moments: The Schiff Theorem and Its Corrections
Searches for the permanent electric dipole moments (EDMs) of diamagnetic
atoms provide powerful probes of CP-violating hadronic and semileptonic
interactions. The theoretical interpretation of such experiments, however,
requires careful implementation of a well-known theorem by Schiff that implies
a vanishing net EDM for an atom built entirely from point-like, nonrelativistic
constituents that interact only electrostatically. Any experimental observation
of a nonzero atomic EDM would result from corrections to the point-like,
nonrelativistic, electrostatic assumption. We reformulate Schiff's theorem at
the operator level and delineate the electronic and nuclear operators whose
atomic matrix elements generate corrections to "Schiff screening". We obtain a
form for the operator responsible for the leading correction associated with
finite nuclear size -- the so-called "Schiff moment" operator -- and observe
that it differs from the corresponding operator used in previous Schiff moment
computations. We show that the more general Schiff moment operator reduces to
the previously employed operator only under certain approximations that are not
generally justified. We also identify other corrections to Schiff screening
that may not be included properly in previous theoretical treatments. We
discuss practical considerations for obtaining a complete computation of
corrections to Schiff screening in atomic EDM calculations.Comment: 31 pages, 2 figures, typeset by REVTe
Genetic control of maize shoot apical meristem architecture
The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 · Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (629 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions. © 2014 Thompson et al
Diffraction of a superfluid Fermi gas by an atomic grating
An atomic grating generated by a pulsed standing wave laser field is proposed
to manipulate the superfluid state in a quantum degenerate gas of fermionic
atoms. We show that in the presence of atomic Cooper pairs, the density
oscillations of the gas caused by the atomic grating exhibit a much longer
coherence time than that in the normal Fermi gas. Our result indicates that the
technique of a pulsed atomic grating can be a potential candidate to detect the
atomic superfluid state in a quantum degenerate Fermi gas.Comment: 4 pages, 2 figure
- …