29 research outputs found

    Continuous Time Monte Carlo and Spatial Ordering in Driven Lattice Gases: Application to Driven Vortices in Periodic Superconducting Networks

    Full text link
    We consider the two dimensional (2D) classical lattice Coulomb gas as a model for magnetic field induced vortices in 2D superconducting networks. Two different dynamical rules are introduced to investigate driven diffusive steady states far from equilibrium as a function of temperature and driving force. The resulting steady states differ dramatically depending on which dynamical rule is used. We show that the commonly used driven diffusive Metropolis Monte Carlo dynamics contains unphysical intrinsic randomness that destroys the spatial ordering present in equilibrium (the vortex lattice) over most of the driven phase diagram. A continuous time Monte Carlo (CTMC) is then developed, which results in spatially ordered driven states at low temperature in finite sized systems. We show that CTMC is the natural discretization of continuum Langevin dynamics, and argue that it gives the correct physical behavior when the discrete grid represents the minima of a periodic potential. We use detailed finite size scaling methods to analyze the spatial structure of the steady states. We find that finite size effects can be subtle and that very long simulation times can be needed to arrive at the correct steady state. For particles moving on a triangular grid, we find that the ordered moving state is a transversely pinned smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales. For particles moving on a square grid, the moving state is a similar smectic at large drives, but we find evidence for a possible moving solid at lower drives. We find that the driven liquid on the square grid has long range hexatic order, and we explain this as a specifically non-equilibrium effect. We show that, in the liquid, fluctuations are diffusive in both the transverse and longitudinal directions.Comment: 29 pages, 35 figure

    Vortex Dynamics and Defects in Simulated Flux Flow

    Get PDF
    We present the results of molecular dynamic simulations of a two-dimensional vortex array driven by a uniform current through random pinning centers at zero temperature. We identify two types of flow of the driven array near the depinning threshold. For weak disorder the flux array contains few dislocation and moves via correlated displacements of patches of vortices in a {\it crinkle} motion. As the disorder strength increases, we observe a crossover to a spatially inhomogeneous regime of {\it plastic} flow, with a very defective vortex array and a channel-like structure of the flowing regions. The two regimes are characterized by qualitatively different spatial distribution of vortex velocities. In the crinkle regime the distribution of vortex velocities near threshold has a single maximum that shifts to larger velocities as the driving force is increased. In the plastic regime the distribution of vortex velocities near threshold has a clear bimodal structure that persists upon time-averaging the individual velocities. The bimodal structure of the velocity distribution reflects the coexistence of pinned and flowing regions and is proposed as a quantitative signature of plastic flow

    Dynamic Phases of Vortices in Superconductors with Periodic Pinning

    Full text link
    We present results from extensive simulations of driven vortex lattices interacting with periodic arrays of pinning sites. Changing an applied driving force produces a rich variety of novel dynamical plastic flow phases which are very distinct from those observed in systems with random pinning arrays. Signatures of the transition between these different dynamical phases include sudden jumps in the current-voltage curves as well as marked changes in the vortex trajectories and the vortex lattice order. Several dynamical phase diagrams are obtained as a function of commensurability, pinning strength, and spatial order of the pinning sites.Comment: 4 pages, 3 figures. To appear in Physical Review Letters. Movies available at http://www-personal.engin.umich.edu/~nor

    Gliding dislocations in a driven vortex lattice

    Full text link
    The dynamics of dislocations in a two-dimensional vortex lattice is studied in the presence of a pinning potential and a transport current. In a vortex lattice drifting with velocity vv a glide velocity VdV_d of the dislocation with respect to the vortex lattice is found to decay like Vdv4V_d \sim v^{-4} for large drive. From this result the velocity for the crossover between a regime of coherent elastic motion and a regime of incoherent plastic motion of vortices is estimated.Comment: 4 pages Revte

    Vortex Dynamics and Defects in Simulated Flux Flow

    Get PDF
    We present the results of molecular dynamic simulations of a two-dimensional vortex array driven by a uniform current through random pinning centers at zero temperature. We identify two types of flow of the driven array near the depinning threshold. For weak disorder the flux array contains few dislocation and moves via correlated displacements of patches of vortices in a {\it crinkle} motion. As the disorder strength increases, we observe a crossover to a spatially inhomogeneous regime of {\it plastic} flow, with a very defective vortex array and a channel-like structure of the flowing regions. The two regimes are characterized by qualitatively different spatial distribution of vortex velocities. In the crinkle regime the distribution of vortex velocities near threshold has a single maximum that shifts to larger velocities as the driving force is increased. In the plastic regime the distribution of vortex velocities near threshold has a clear bimodal structure that persists upon time-averaging the individual velocities. The bimodal structure of the velocity distribution reflects the coexistence of pinned and flowing regions and is proposed as a quantitative signature of plastic flow.Comment: 12 pages, 13 embedded PostScript figure

    Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops

    Get PDF
    We have investigated the mean field dynamics of an overdamped viscoelastic medium driven through quenched disorder. The model introduced incorporates coexistence of pinned and sliding degrees of freedom and can exhibit continuous elastic depinning or first order hysteretic depinning. Numerical simulations indicate mean field instabilities that correspond to macroscopic stick-slip events and lead to premature switching. The model is relevant for the dynamics of driven vortex arrays in superconductors and other extended disordered systems.Comment: 4 pages, 2 figure

    Nonequilibrium dislocation dynamics and instability of driven vortex lattices in two dimensions

    Full text link
    We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random impurities. The structure and dynamics of dislocations is studied in this genuine nonequilibrium situation on the basis of a coarse-grained equation of motion for the displacement field. The presence of dislocations leads to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the interaction between dislocations and thereby an instability of the vortex lattice to the proliferation of free dislocations.Comment: published version with minor correction

    Hall noise and transverse freezing in driven vortex lattices

    Full text link
    We study driven vortices lattices in superconducting thin films. Above the critical force FcF_c we find two dynamical phase transitions at FpF_p and FtF_t, which could be observed in simultaneous noise measurements of the longitudinal and the Hall voltage. At FpF_p there is a transition from plastic flow to smectic flow where the voltage noise is isotropic (Hall noise = longitudinal noise) and there is a peak in the differential resistance. At FtF_t there is a sharp transition to a frozen transverse solid where the Hall noise falls down abruptly and vortex motion is localized in the transverse direction.Comment: 4 pages, 3 figure

    Depinning and plasticity of driven disordered lattices

    Full text link
    We review in these notes the dynamics of extended condensed matter systesm, such as vortex lattices in type-II superconductors and charge density waves in anisotropic metals, driven over quenched disorder. We focus in particular on the case of strong disorder, where topological defects are generated in the driven lattice. In this case the repsonse is plastic and the depinning transition may become discontinuous and hysteretic.Comment: 21 pages, 6 figures. Proceedings the XIX Sitges Conference on Jamming, Yielding, and Irreversible Deformations in Condensed Matter, Sitges, Barcelona, Spain, June 14-18, 200

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure
    corecore