1,358 research outputs found

    Algebraic Bethe Ansatz for a discrete-state BCS pairing model

    Full text link
    We show in detail how Richardson's exact solution of a discrete-state BCS (DBCS) model can be recovered as a special case of an algebraic Bethe Ansatz solution of the inhomogeneous XXX vertex model with twisted boundary conditions: by implementing the twist using Sklyanin's K-matrix construction and taking the quasiclassical limit, one obtains a complete set of conserved quantities, H_i, from which the DBCS Hamiltonian can be constructed as a second order polynomial. The eigenvalues and eigenstates of the H_i (which reduce to the Gaudin Hamiltonians in the limit of infinitely strong coupling) are exactly known in terms of a set of parameters determined by a set of on-shell Bethe Ansatz equations, which reproduce Richardson's equations for these parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ model and/or choosing a generic polynomial of the H_i as Hamiltonian, more general exactly solvable models can be constructed. -- To make the paper accessible to readers that are not Bethe Ansatz experts, the introductory sections include a self-contained review of those of its feature which are needed here.Comment: 17 pages, 5 figures, submitted to Phys. Rev.

    Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZXXZ chain

    Full text link
    We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of R\'enyi entropies S2S_2 and SS_\infty are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type (an example of symmetry protected topological ordered phases), Classical Dimer and N\'eel phases, the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality in the ground state are studied and quantified by the entanglement convertibility. We found that, at small spatial scales, the ground state is not convertible within the topological Haldane dimer phase. The phenomenology we observe can be described in terms of correlations between edge states. We found that the entanglement spectrum also exhibits a distinctive response in the topological phase: the effective rank of the reduced density matrix displays a specifically large "susceptibility" in the topological phase. These findings support the idea that although the topological order in the ground state cannot be detected by local inspection, the ground state response at local scale can tell the topological phases apart from the non-topological phases.Comment: Final versio

    Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

    Full text link
    We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia

    Finite-Temperature Scaling of Magnetic Susceptibility and Geometric Phase in the XY Spin Chain

    Full text link
    We study the magnetic susceptibility of 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits the finite-temperature scaling behavior. This scaling behavior of the magnetic susceptibility in 1D quantum XY model, due to the quantum-classical mapping, can be easily experimentally tested. Furthermore, the universality in the critical properties of the magnetic susceptibility in quantum XY model is verified. Our study also reveals the close relation between the magnetic susceptibility and the geometric phase in some spin systems, where the quantum phase transitions are driven by an external magnetic field.Comment: 6 pages, 4 figures, get accepted for publication by J. Phys. A: Math. Theo

    Mixed Early and Late-Type Properties in the Bar of NGC 6221: Evidence for Evolution along the Hubble Sequence?

    Get PDF
    Rotation curves and velocity dispersion profiles are presented for both the stellar and gaseous components along five different position angles (P.A.=5, 50, 95, 125 and 155 degrees) of the nearby barred spiral NGC 6221. The observed kinematics extends out to about 80" from the nucleus. Narrow and broad-band imaging is also presented. The radial profiles of the fluxes ratio [NII]/Halpha reveal the presence of a ring-like structure of ionized gas, with a radius of about 9" and a deprojected circular velocity of about 280 km/s. The analysis of the dynamics of the bar indicates this ring is related to the presence of an inner Lindblad resonance (ILR) at 1.3 kpc. NGC6221 is found to exhibit intermediate properties between those of the early-type barred galaxies: the presence of a gaseous ring at an ILR, the bar edge located between the ILR's and the corotation radius beyond the steep rising portion of the rotation curve, the dust-lane pattern, and those of the late-type galaxies: an almost exponential surface brightness profile, the presence of Halpha regions along all the bar, the spiral-arm pattern. It is consistent with scenarios of bar-induced evolution from later to earlier-type galaxies.Comment: 1 File ds7406.tar.gz which contains: one latex file (ds7406.tex), and 10 encsulated postscript figures (ds7406f**.eps). To be compiled with aa-l latex2e macro style. To be published in A&A Sup. Serie

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie

    Quantum phase transitions in the Kondo-necklace model: Perturbative continuous unitary transformation approach

    Full text link
    The Kondo-necklace model can describe magnetic low-energy limit of strongly correlated heavy fermion materials. There exist multiple energy scales in this model corresponding to each phase of the system. Here, we study quantum phase transition between the Kondo-singlet phase and the antiferromagnetic long-range ordered phase, and show the effect of anisotropies in terms of quantum information properties and vanishing energy gap. We employ the "perturbative continuous unitary transformations" approach to calculate the energy gap and spin-spin correlations for the model in the thermodynamic limit of one, two, and three spatial dimensions as well as for spin ladders. In particular, we show that the method, although being perturbative, can predict the expected quantum critical point, where the gap of low-energy spectrum vanishes, which is in good agreement with results of other numerical and Green's function analyses. In addition, we employ concurrence, a bipartite entanglement measure, to study the criticality of the model. Absence of singularities in the derivative of concurrence in two and three dimensions in the Kondo-necklace model shows that this model features multipartite entanglement. We also discuss crossover from the one-dimensional to the two-dimensional model via the ladder structure.Comment: 12 pages, 6 figure

    Bose-Einstein condensation and entanglement in magnetic systems

    Full text link
    We present a study of magnetic field induced quantum phase transitions in insulating systems. A generalized scaling theory is used to obtain the temperature dependence of several physical quantities along the quantum critical trajectory (H=HCH=H_{C}, T0T\to0) where HH is a longitudinal external magnetic field and HCH_{C} the critical value at which the transition occurs. We consider transitions from a spin liquid at a critical field HC1H_{C1} and from a fully polarized paramagnet, at HC2H_{C2}, into phases with long range order in the transverse components. The transitions at HC1H_{C1} and HC2H_{C2} can be viewed as Bose-Einstein condensations of magnons which however belong to different universality classes since they have different values of the dynamic critical exponent zz. Finally, we use that the magnetic susceptibility is an entanglement witness to discuss how this type of correlation sets in as the system approaches the quantum critical point along the critical trajectory, H=HC2H=H_{C2}, T0T\to0.Comment: 7 pages, 1 Table; accepted version; changes in text and new reference

    Noise reduction in gravitational wave interferometers using feedback

    Full text link
    We show that the quantum locking scheme recently proposed by Courty {\it et al.} [Phys. Rev. Lett. {\bf 90}, 083601 (2003)] for the reduction of back action noise is able to significantly improve the sensitivity of the next generation of gravitational wave interferometers.Comment: 12 pages, 2 figures, in print in the Special Issue of J. Opt. B on Fluctuations and Noise in Photonics and Quantum Optic
    corecore