1 research outputs found
Carbon nanotube-based quantum pump in the presence of superconducting lead
Parametric electron pump through superconductor-carbon-nanotube based
molecular devices was investigated. It is found that a dc current, which is
assisted by resonant Andreev reflection, can be pumped out from such molecular
device by a cyclic variation of two gate voltages near the nanotube. The pumped
current can be either positive or negative under different system parameters.
Due to the Andreev reflection, the pumped current has the double peak structure
around the resonant point. The ratio of pumped current of N-SWNT-S system to
that of N-SWNT-N system (I^{NS}/I^N) is found to approach four in the weak
pumping regime near the resonance when there is exactly one resonant level at
Fermi energy inside the energy gap. Numerical results confirm that in the weak
pumping regime the pumped current is proportional to the square of the pumping
amplitude V_p, but in the strong pumping regime the pumped current has the
linear relation with V_p. Our numerical results also predict that pumped
current can be obtained more easily by using zigzag tube than by using armchair
tube