72 research outputs found

    Testing earthquake links in Mexico from 1978 to the 2017 M = 8.1 Chiapas and M = 7.1 Puebla Shocks

    Get PDF
    The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and ~600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years

    Expression pattern of the urokinase-plasminogen activator system in rat DS-sarcoma: Role of oxygenation status and tumour size

    Get PDF
    The urokinase plasminogen activator system plays a central role in malignant tumour progression. Both tumour hypoxia and enhancement of urokinase plasminogen activator, urokinase plasminogen activator-receptor and plasminogen activator inhibitor type 1 have been identified as adverse prognostic factors. Upregulation of urokinase plasminogen activator or plasminogen activator inhibitor type 1 could present means by which hypoxia influences malignant progression. Therefore, the impact of hypoxia on the expression pattern of the urokinase plasminogen activator system in rat DS-sarcoma in vivo and in vitro was examined. In the in vivo setting, tumour cells were implanted subcutaneously into rats, which were housed under either hypoxia, atmospheric air or hyperoxia. For in vitro studies, DS-sarcoma cells were incubated for 24 h under hypoxia. Urokinase plasminogen activator and urokinase plasminogen activator-receptor expression were analysed by flow cytometry. Urokinase plasminogen activator activity was measured using zymography. Plasminogen activator inhibitor type 1 protein levels in vitro and in vivo were examined with ELISA. PAI-1 mRNA levels were determined by RT–PCR. DS-sarcoma cells express urokinase plasminogen activator, urokinase plasminogen activator-receptor, and plasminogen activator inhibitor type 1 in vitro and in vivo. The urokinase plasminogen activator activity is enhanced in DS-sarcomas compared to normal tissues and rises with increasing tumour volume. The oxygenation level has no impact on the urokinase plasminogen activator activity in cultured DS-sarcoma cells or in solid tumours, although in vitro an increase in plasminogen activator inhibitor type 1 protein and mRNA expression after hypoxic challenge is detectable. The latter plasminogen activator inhibitor type 1 changes were not detectable in vivo. Hypoxia has been demonstrated to contribute to the upregulation of some components of the system in vitro, although this effect was not reproducible in vivo. This may indicate that the serum level of plasminogen activator inhibitor type 1 is not a reliable surrogate marker of tumour hypoxia

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network
    corecore