251 research outputs found
Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations
The dynamics of quasicrystals is characterized by the existence of phason
excitations in addition to the usual phonon modes. In order to investigate
their interplay on an elementary level we resort to various one-dimensional
model systems. The main observables are the static, the incoherent, and the
coherent structure factor, which are extracted from molecular dynamics
simulations. For the validation of the algorithms, results for the harmonic
periodic chain are presented. We then study the Fibonacci chain with harmonic
and anharmonic interaction potentials. In the dynamic Fibonacci chain
neighboring atoms interact by double-well potentials allowing for phason flips.
The difference between the structure factors of the dynamic and the harmonic
Fibonacci chain lies in the temperature dependence of the phonon line width. If
a bias is introduced in the well depth, dispersionless optic phonon bands split
off.Comment: 12 pages, 15 figure
Continuum elastic sphere vibrations as a model for low-lying optical modes in icosahedral quasicrystals
The nearly dispersionless, so-called "optical" vibrational modes observed by
inelastic neutron scattering from icosahedral Al-Pd-Mn and Zn-Mg-Y
quasicrystals are found to correspond well to modes of a continuum elastic
sphere that has the same diameter as the corresponding icosahedral basic units
of the quasicrystal. When the sphere is considered as free, most of the
experimentally found modes can be accounted for, in both systems. Taking into
account the mechanical connection between the clusters and the remainder of the
quasicrystal allows a complete assignment of all optical modes in the case of
Al-Pd-Mn. This approach provides support to the relevance of clusters in the
vibrational properties of quasicrystals.Comment: 9 pages without figure
Structure of smectic defect cores: an X-ray study of 8CB liquid crystal ultra-thin films
We study the structure of very thin liquid crystal films frustrated by
antagonistic anchorings in the smectic phase. In a cylindrical geometry, the
structure is dominated by the defects for film thicknesses smaller than 150 nm
and the detailed topology of the defects cores can be revealed by x-ray
diffraction. They appear to be split in half tube-shaped Rotating Grain
Boundaries (RGB). We determine the RGB spatial extension and evaluate its
energy per unit line. Both are significantly larger than the ones usually
proposed in the literatureComment: 4 page
Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields
Quasicrystals provide a fascinating class of materials with intriguing
properties. Despite a strong potential for numerous technical applications, the
conditions under which quasicrystals form are still poorly understood.
Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry
but no single example with 7 or 9-fold symmetry has ever been observed. Here we
report on geometrical constraints which impede the formation of quasicrystals
with certain symmetries in a colloidal model system. Experimentally, colloidal
quasicrystals are created by subjecting micron-sized particles to
two-dimensional quasiperiodic potential landscapes created by n=5 or seven
laser beams. Our results clearly demonstrate that quasicrystalline order is
much easier established for n = 5 compared to n = 7. With increasing laser
intensity we observe that the colloids first adopt quasiperiodic order at local
areas which then laterally grow until an extended quasicrystalline layer forms.
As nucleation sites where quasiperiodicity originates, we identify highly
symmetric motifs in the laser pattern. We find that their density strongly
varies with n and surprisingly is smallest exactly for those quasicrystalline
symmetries which have never been observed in atomic systems. Since such high
symmetry motifs also exist in atomic quasicrystals where they act as
preferential adsorption sites, this suggests that it is indeed the deficiency
of such motifs which accounts for the absence of materials with e.g. 7-fold
symmetry
Icosahedral multi-component model sets
A quasiperiodic packing Q of interpenetrating copies of C, most of them only
partially occupied, can be defined in terms of the strip projection method for
any icosahedral cluster C. We show that in the case when the coordinates of the
vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the
superspace can be reduced, namely, Q can be re-defined as a multi-component
model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl
2D honeycomb transformation into dodecagonal quasicrystals driven by electrostatic forces
Dodecagonal oxide quasicrystals are well established as examples of long-range aperiodic order in two dimensions. However, despite investigations by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), low-energy electron microscopy (LEEM), photoemission spectroscopy as well as density functional theory (DFT), their structure is still controversial. Furthermore, the principles that guide the formation of quasicrystals (QCs) in oxides are elusive since the principles that are known to drive metallic QCs are expected to fail for oxides. Here we demonstrate the solution of the oxide QC structure by synchrotron-radiation based surface x-ray diffraction (SXRD) refinement of its largest-known approximant. The oxide QC formation is forced by large alkaline earth metal atoms and the reduction of their mutual electrostatic repulsion. It drives the n = 6 structure of the 2D Ti2O3 honeycomb arrangement via Stone–Wales transformations into an ordered structure with empty n = 4, singly occupied n = 7 and doubly occupied n = 10 rings, as supported by DFT
Surface structure of i-Al(68)Pd(23)Mn(9): An analysis based on the T*(2F) tiling decorated by Bergman polytopes
A Fibonacci-like terrace structure along a 5fold axis of i-Al(68)Pd(23)Mn(9)
monograins has been observed by T.M. Schaub et al. with scanning tunnelling
microscopy (STM). In the planes of the terraces they see patterns of dark
pentagonal holes. These holes are well oriented both within and among terraces.
In one of 11 planes Schaub et al. obtain the autocorrelation function of the
hole pattern. We interpret these experimental findings in terms of the
Katz-Gratias-de Boisseu-Elser model. Following the suggestion of Elser that the
Bergman clusters are the dominant motive of this model, we decorate the tiling
T*(2F) by the Bergman polytopes only. The tiling T*(2F) allows us to use the
powerful tools of the projection techniques. The Bergman polytopes can be
easily replaced by the Mackay polytopes as the decoration objects. We derive a
picture of ``geared'' layers of Bergman polytopes from the projection
techniques as well as from a huge patch. Under the assumption that no surface
reconstruction takes place, this picture explains the Fibonacci-sequence of the
step heights as well as the related structure in the terraces qualitatively and
to certain extent even quantitatively. Furthermore, this layer-picture requires
that the polytopes are cut in order to allow for the observed step heights. We
conclude that Bergman or Mackay clusters have to be considered as geometric
building blocks of the i-AlPdMn structure rather than as energetically stable
entities
- …