1 research outputs found

    Disturbance spreading in incommensurate and quasiperiodic systems

    Full text link
    The propagation of an initially localized excitation in one dimensional incommensurate, quasiperiodic and random systems is investigated numerically. It is discovered that the time evolution of variances σ2(t)\sigma^2(t) of atom displacements depends on the initial condition. For the initial condition with nonzero momentum, σ2(t)\sigma^2(t) goes as tαt^\alpha with α=1\alpha=1 and 0 for incommensurate Frenkel-Kontorova (FK) model at VV below and above VcV_c respectively; and α=1\alpha=1 for uniform, quasiperiodic and random chains. It is also found that α=1β\alpha=1-\beta with β\beta the exponent of distribution function of frequency at zero frequency, i.e., ρ(ω)ωβ\rho(\omega)\sim \omega^{\beta} (as ω0\omega\to 0). For the initial condition with zero momentum, α=0\alpha=0 for all systems studied. The underlying physical meaning of this diffusive behavior is discussed.Comment: 8 Revtex Pages, 5 PS figures included, to appear in Phys. Rev. B April 200
    corecore